Bioinspired Lipid Nanoparticles with Prolonged Cartilage Retention Boost Regeneration in Early Osteoarthritis and Large Cartilage Defects

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jin Zhou, Guanhuier Wang, Yue Zhou, Xubo Lin, Zhenmin Zhao, Yumeng Xue, Yang An, Hui Shao, Ying Wang, Sen Hou*, Lizhen Wang* and Yubo Fan*, 
{"title":"Bioinspired Lipid Nanoparticles with Prolonged Cartilage Retention Boost Regeneration in Early Osteoarthritis and Large Cartilage Defects","authors":"Jin Zhou,&nbsp;Guanhuier Wang,&nbsp;Yue Zhou,&nbsp;Xubo Lin,&nbsp;Zhenmin Zhao,&nbsp;Yumeng Xue,&nbsp;Yang An,&nbsp;Hui Shao,&nbsp;Ying Wang,&nbsp;Sen Hou*,&nbsp;Lizhen Wang* and Yubo Fan*,&nbsp;","doi":"10.1021/acsnano.4c1382810.1021/acsnano.4c13828","DOIUrl":null,"url":null,"abstract":"<p >Osteoarthritis (OA) leads to the progressive degeneration of articular cartilage, yet there is currently no effective treatment available for both the early and late stages of osteoarthritis. Cartilage regeneration requires the action and prolonged retention of multiple drugs at injured sites to recruit endogenous cells and facilitate cartilage formation. Here, we propose a cartilage-binding-peptide-modified lipid nanoparticle as a drug carrier to achieve sustained release of protein (TGF-β3) and small molecular drugs (KGN) for one month. Through systematic screening of multiple peptides targeting collagen II or chondrocytes, we identify a decorin-derived-peptide-modified lipid nanoparticle with precise targeting and prolonged retention capability in cartilage. Improved nanoparticle stability, high drug loading, and sustainable dual-drug release are achieved through interbilayer cross-linking of adjacent lipid bilayers within multilamellar vesicles. In a surgical model of rat OA, the nanoparticle loading with TGF-β3 and KGN protects injured cartilage from degeneration progression. For severe cartilage injury (full-thickness defects) in a rabbit model, the nanoparticle facilitates the regeneration of high-quality hyaline-like cartilage, which is a rare achievement in full-thickness cartilage regeneration through nanoparticle-based drug delivery. This work presents a strategy for the rational design of bioinspired cartilage-binding peptide-modified lipid-based drug carriers to promote hyaline-like cartilage regeneration.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 14","pages":"13654–13672 13654–13672"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c13828","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) leads to the progressive degeneration of articular cartilage, yet there is currently no effective treatment available for both the early and late stages of osteoarthritis. Cartilage regeneration requires the action and prolonged retention of multiple drugs at injured sites to recruit endogenous cells and facilitate cartilage formation. Here, we propose a cartilage-binding-peptide-modified lipid nanoparticle as a drug carrier to achieve sustained release of protein (TGF-β3) and small molecular drugs (KGN) for one month. Through systematic screening of multiple peptides targeting collagen II or chondrocytes, we identify a decorin-derived-peptide-modified lipid nanoparticle with precise targeting and prolonged retention capability in cartilage. Improved nanoparticle stability, high drug loading, and sustainable dual-drug release are achieved through interbilayer cross-linking of adjacent lipid bilayers within multilamellar vesicles. In a surgical model of rat OA, the nanoparticle loading with TGF-β3 and KGN protects injured cartilage from degeneration progression. For severe cartilage injury (full-thickness defects) in a rabbit model, the nanoparticle facilitates the regeneration of high-quality hyaline-like cartilage, which is a rare achievement in full-thickness cartilage regeneration through nanoparticle-based drug delivery. This work presents a strategy for the rational design of bioinspired cartilage-binding peptide-modified lipid-based drug carriers to promote hyaline-like cartilage regeneration.

Abstract Image

具有延长软骨保留时间的生物启发脂质纳米粒子能促进早期骨关节炎和大面积软骨缺损的再生
骨关节炎(OA)导致关节软骨进行性变性,但目前还没有有效的治疗方法可用于早期和晚期骨关节炎。软骨再生需要多种药物在损伤部位的作用和长期滞留,以招募内源性细胞并促进软骨形成。本文提出一种软骨结合肽修饰的脂质纳米颗粒作为药物载体,实现蛋白(TGF-β3)和小分子药物(KGN)的缓释一个月。通过系统筛选针对II型胶原或软骨细胞的多肽,我们确定了一种decorin衍生的肽修饰脂质纳米颗粒,它具有精确的靶向性和在软骨中的长期保留能力。通过多层囊泡内相邻脂质双层的双层交联,提高了纳米颗粒的稳定性,提高了药物负荷,并实现了可持续的双药释放。在大鼠骨性关节炎手术模型中,负载TGF-β3和KGN的纳米颗粒可保护受损软骨免受退变进展。对于兔模型严重软骨损伤(全层缺损),纳米颗粒促进了高质量透明样软骨的再生,这是利用纳米颗粒给药实现全层软骨再生的罕见成果。这项工作提出了一种合理设计仿生软骨结合肽修饰脂基药物载体的策略,以促进透明样软骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信