{"title":"Local second order horizontal Sobolev regularity for p-harmonic functions with Hörmander vector fields of step two","authors":"Chengwei Yu , Yu Liu","doi":"10.1016/j.bulsci.2025.103636","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish a trace inequality for any real symmetric square matrix and apply it to Hörmander vector fields of step two, which are denoted by <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. Let <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mn>4</mn></math></span> when <span><math><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span> and <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>3</mn><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span>. Then we utilize the trace inequality to prove the horizontal Sobolev <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>X</mi><mo>,</mo><mrow><mspace></mspace><mi>loc</mi><mspace></mspace></mrow></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msubsup></math></span>-regularity of the weak solution <em>u</em> to the degenerate subelliptic <em>p</em>-harmonic equation <span><math><msub><mrow><mo>△</mo></mrow><mrow><mi>X</mi><mo>,</mo><mi>p</mi></mrow></msub><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msubsup><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mo>|</mo><mi>X</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, namely, <span><math><mi>X</mi><mi>X</mi><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mrow><mspace></mspace><mi>loc</mi><mspace></mspace></mrow></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>. Compared to the case of Euclidean spaces <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> (<span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span>), the range of this determined <em>p</em> is already optimal.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103636"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000624","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish a trace inequality for any real symmetric square matrix and apply it to Hörmander vector fields of step two, which are denoted by . Let when and when . Then we utilize the trace inequality to prove the horizontal Sobolev -regularity of the weak solution u to the degenerate subelliptic p-harmonic equation , namely, . Compared to the case of Euclidean spaces (), the range of this determined p is already optimal.