{"title":"GABAergic neurons in central amygdala contribute to orchestrating anxiety-like behaviors and breathing patterns","authors":"Xiaoyi Wang, Shangyu Bi, Ziteng Yue, Xinxin Chen, Yuhang Liu, Tianjiao Deng, Liuqi Shao, Xinyi Jing, Cuidie Wang, Yakun Wang, Wei He, Hongxiao Yu, Luo Shi, Fang Yuan, Sheng Wang","doi":"10.1038/s41467-025-58791-6","DOIUrl":null,"url":null,"abstract":"<p>Anxiety is characterized by dysregulated respiratory reactivity to emotional stimuli. The central amygdala (CeA) is a pivotal structure involved in processing emotional alterations, but its involvement in orchestrating anxiety-like behaviors and specific breathing patterns remains largely unexplored. Our findings demonstrate that the acute restraint stress (ARS) induces anxiety-like behaviors in mice, marked by prolonged grooming time and faster respiratory frequency (RF). Conversely, silencing GABAergic CeA neurons reduces post-ARS anxiety-like behaviors, as well as the associated increases in grooming time and RF. In actively behaving mice, stimulation of GABAergic CeA neurons elicits anxiety-like behaviors, concurrently prolongs grooming time, accelerates RF through a CeA-thalamic paraventricular nucleus (PVT) circuit. In either behaviorally quiescent or anesthetized mice, stimulation of these neurons significantly increases RF but does not induce anxiety-like behaviors through the CeA-lateral parabrachial nucleus (LPBN) circuit. Collectively, GABAergic CeA neurons are instrumental in orchestrating anxiety-like behaviors and breathing patterns primarily through the CeA-PVT and CeA-LPBN circuits, respectively.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"40 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58791-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Anxiety is characterized by dysregulated respiratory reactivity to emotional stimuli. The central amygdala (CeA) is a pivotal structure involved in processing emotional alterations, but its involvement in orchestrating anxiety-like behaviors and specific breathing patterns remains largely unexplored. Our findings demonstrate that the acute restraint stress (ARS) induces anxiety-like behaviors in mice, marked by prolonged grooming time and faster respiratory frequency (RF). Conversely, silencing GABAergic CeA neurons reduces post-ARS anxiety-like behaviors, as well as the associated increases in grooming time and RF. In actively behaving mice, stimulation of GABAergic CeA neurons elicits anxiety-like behaviors, concurrently prolongs grooming time, accelerates RF through a CeA-thalamic paraventricular nucleus (PVT) circuit. In either behaviorally quiescent or anesthetized mice, stimulation of these neurons significantly increases RF but does not induce anxiety-like behaviors through the CeA-lateral parabrachial nucleus (LPBN) circuit. Collectively, GABAergic CeA neurons are instrumental in orchestrating anxiety-like behaviors and breathing patterns primarily through the CeA-PVT and CeA-LPBN circuits, respectively.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.