Xiaomin Cheng , Xiaojuan Shui , Quan Yang , Huimin Ma , Yuanyuan Zhang , Ting Zeng , Juan Yang , Zhen Wu , Xiuhua Zhang , Nianjun Yang
{"title":"Highly selective electrochemical sensing of hydroquinone and catechol using Co nanoparticles anchored on N-doped carbon nanotube hollow sphere","authors":"Xiaomin Cheng , Xiaojuan Shui , Quan Yang , Huimin Ma , Yuanyuan Zhang , Ting Zeng , Juan Yang , Zhen Wu , Xiuhua Zhang , Nianjun Yang","doi":"10.1016/j.aca.2025.344074","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Hydroquinone (HQ) and catechol (CC), two important isomers with similar structures, are highly toxic, often coexisting, and impeding each other in the simultaneous detection. Electrochemical technique provides a promising alternative toward the quantification of HQ and CC, due to its inherent advantages in terms of highly sensitive reaction, ease of monitoring, low-cost, simplicity and quick response. Development of a sensing material with outstanding electrocatalytic capabilities and its utilization for the fabrication of an electrochemical sensor for highly selective monitoring of HQ and CC is of great significance.</div></div><div><h3>Results</h3><div>In this study, a novel hierarchical nanostructure is fabricated where Co nanoparticles are anchored on N-doped carbon nanotube hollow sphere (Co/HNC) through the pyrolysis of ZIF-67@ZIF-8 hollow microsphere. On the Co/HNC modified electrode two well-defined and distinguishable peaks are displayed, resulting from electrochemical oxidation of both isomers. As an electrochemical sensor, the recorded peak current displays a linear relationship to the concentration of both HQ and CC from 0.1 to 100 μM under optimal conditions, coupled with their low detection limit of 23 nM and 37 nM, respectively. The probable application of this sensing platform was also checked for the detection of HQ and CC in real samples (e.g., lake water, tap water, detergents, ointment and orange juice), showing outstanding recovery rates. Moreover, simultaneous analysis of HQ and CC exhibited high reproducibility, selectivity and long-term stability.</div></div><div><h3>Significance</h3><div>As a highly efficient electrocatalyst, the unique hollow and porous microsphere structure of Co/HNC affords abundant active sites, short ion diffusion path, outstanding electronic conductivity and high electrocatalytic activity, thereby certifying excellent sensing capability for these two important isomers. This study thus efficiently explores the advances of metal/NC with hollow structure for the formation of selective dihydroxybenzene electrochemical sensors.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1357 ","pages":"Article 344074"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267025004684","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Hydroquinone (HQ) and catechol (CC), two important isomers with similar structures, are highly toxic, often coexisting, and impeding each other in the simultaneous detection. Electrochemical technique provides a promising alternative toward the quantification of HQ and CC, due to its inherent advantages in terms of highly sensitive reaction, ease of monitoring, low-cost, simplicity and quick response. Development of a sensing material with outstanding electrocatalytic capabilities and its utilization for the fabrication of an electrochemical sensor for highly selective monitoring of HQ and CC is of great significance.
Results
In this study, a novel hierarchical nanostructure is fabricated where Co nanoparticles are anchored on N-doped carbon nanotube hollow sphere (Co/HNC) through the pyrolysis of ZIF-67@ZIF-8 hollow microsphere. On the Co/HNC modified electrode two well-defined and distinguishable peaks are displayed, resulting from electrochemical oxidation of both isomers. As an electrochemical sensor, the recorded peak current displays a linear relationship to the concentration of both HQ and CC from 0.1 to 100 μM under optimal conditions, coupled with their low detection limit of 23 nM and 37 nM, respectively. The probable application of this sensing platform was also checked for the detection of HQ and CC in real samples (e.g., lake water, tap water, detergents, ointment and orange juice), showing outstanding recovery rates. Moreover, simultaneous analysis of HQ and CC exhibited high reproducibility, selectivity and long-term stability.
Significance
As a highly efficient electrocatalyst, the unique hollow and porous microsphere structure of Co/HNC affords abundant active sites, short ion diffusion path, outstanding electronic conductivity and high electrocatalytic activity, thereby certifying excellent sensing capability for these two important isomers. This study thus efficiently explores the advances of metal/NC with hollow structure for the formation of selective dihydroxybenzene electrochemical sensors.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.