Fully physically crosslinked supramolecular hydrogel with high tensile strength, low hysteresis, high adhesivity and frost resistance based on confinement effect

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Mingqiang Hu , Dezhan Ye , Xing Qian , Yanhu Zhan , Xiancai Jiang
{"title":"Fully physically crosslinked supramolecular hydrogel with high tensile strength, low hysteresis, high adhesivity and frost resistance based on confinement effect","authors":"Mingqiang Hu ,&nbsp;Dezhan Ye ,&nbsp;Xing Qian ,&nbsp;Yanhu Zhan ,&nbsp;Xiancai Jiang","doi":"10.1016/j.polymer.2025.128404","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional ionic conductive hydrogel was prepared by chemically crosslinking the polymer chains to form network. However, the chemically crosslinked ionic conductive hydrogel usually showed limited elongation at break and high hysteresis during stretching process. Here, a simple strategy of synthesizing fully physically crosslinked ionic conductive supramolecular hydrogel without chemical crosslinker was purposed. Hydrophilic salt not only act as the ion supplier, but also provide the spatial confinement effect to form the completely physically crosslinked hydrogel. Firstly, CaCl<sub>2</sub> was used as the representative salt. The optimal PVA/PAM/CaCl<sub>2</sub> ionic conductive hydrogel (PPC), showed excellent tensile performance (2400.3 ± 140.63 %), anti-freezing performance (−28.8 °C), high conductivity (4.8 ± 0.01 S/m), excellent stability at room temperature, low hysteresis, and high transparency. The conductivity of PPC showed no sensitivity to the tensile strain. This innovative combination enables PPC ionic conductive hydrogel to have extraordinary versatility. The flexible all-solid-state supercapacitor assembled with PPC ionic conductive hydrogel as the electrolyte has a high area specific capacitance (136.9 mF/cm<sup>2</sup>). The prepared supercapacitor can maintain good stability under certain tensile deformation (The capacitance retention rate was 87.7 % when stretched at 200 %). Moreover, other high hydrophilic salts including LiCl, ZnCl<sub>2</sub>, MgCl<sub>2</sub> and AlCl<sub>3</sub> were used to prepare ionic conductive PVA/PAM hydrogel to verify the universality of this preparation method.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"327 ","pages":"Article 128404"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125003908","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional ionic conductive hydrogel was prepared by chemically crosslinking the polymer chains to form network. However, the chemically crosslinked ionic conductive hydrogel usually showed limited elongation at break and high hysteresis during stretching process. Here, a simple strategy of synthesizing fully physically crosslinked ionic conductive supramolecular hydrogel without chemical crosslinker was purposed. Hydrophilic salt not only act as the ion supplier, but also provide the spatial confinement effect to form the completely physically crosslinked hydrogel. Firstly, CaCl2 was used as the representative salt. The optimal PVA/PAM/CaCl2 ionic conductive hydrogel (PPC), showed excellent tensile performance (2400.3 ± 140.63 %), anti-freezing performance (−28.8 °C), high conductivity (4.8 ± 0.01 S/m), excellent stability at room temperature, low hysteresis, and high transparency. The conductivity of PPC showed no sensitivity to the tensile strain. This innovative combination enables PPC ionic conductive hydrogel to have extraordinary versatility. The flexible all-solid-state supercapacitor assembled with PPC ionic conductive hydrogel as the electrolyte has a high area specific capacitance (136.9 mF/cm2). The prepared supercapacitor can maintain good stability under certain tensile deformation (The capacitance retention rate was 87.7 % when stretched at 200 %). Moreover, other high hydrophilic salts including LiCl, ZnCl2, MgCl2 and AlCl3 were used to prepare ionic conductive PVA/PAM hydrogel to verify the universality of this preparation method.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信