Xue Liang , Chenchen Zhang , Qimeng Yin , Yuerong Bai , Jiahao Li , Min Qiu
{"title":"Dimethylamino-based synthetic lipidoid nanoparticles for selective mRNA delivery to splenic antigen-presenting cells","authors":"Xue Liang , Chenchen Zhang , Qimeng Yin , Yuerong Bai , Jiahao Li , Min Qiu","doi":"10.1016/j.jconrel.2025.113737","DOIUrl":null,"url":null,"abstract":"<div><div>Targeted systemic mRNA delivery to extrahepatic tissues remains a formidable challenge, especially in the absence of targeting ligands on lipid nanoparticles. In this study, we introduce a series of dimethylamino-based ionizable lipidoids (DMA-Lipidoids) engineered for selective mRNA delivery to the spleen. Using a combinatorial approach, we synthesized 48 chemically distinct lipidoids by pairing four DMA-containing amine heads with 12 newly designed hyperbranched tails. Remarkably, lipidoids with tails H228, H226x, H246x, and H446x demonstrated exceptional spleen-targeting efficiency. To refine the lipidoid design, we constructed and screened a secondary library of 36 lipidoids containing DMA analogues. Through this two-round screening process, we identified lipidoids with both high potency and spleen selectivity. The lead candidate, DMA4-H228, achieved precise delivery of ovalbumin mRNA to antigen-presenting cells (APCs), driving interferon-α (IFN α) production and APC activation. This robust immune response effectively inhibited tumor growth. Overall, these innovative DMA-lipidoids demonstrate strong spleen-targeting capabilities, offering a transformative platform for mRNA vaccine development.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"382 ","pages":"Article 113737"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925003578","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Targeted systemic mRNA delivery to extrahepatic tissues remains a formidable challenge, especially in the absence of targeting ligands on lipid nanoparticles. In this study, we introduce a series of dimethylamino-based ionizable lipidoids (DMA-Lipidoids) engineered for selective mRNA delivery to the spleen. Using a combinatorial approach, we synthesized 48 chemically distinct lipidoids by pairing four DMA-containing amine heads with 12 newly designed hyperbranched tails. Remarkably, lipidoids with tails H228, H226x, H246x, and H446x demonstrated exceptional spleen-targeting efficiency. To refine the lipidoid design, we constructed and screened a secondary library of 36 lipidoids containing DMA analogues. Through this two-round screening process, we identified lipidoids with both high potency and spleen selectivity. The lead candidate, DMA4-H228, achieved precise delivery of ovalbumin mRNA to antigen-presenting cells (APCs), driving interferon-α (IFN α) production and APC activation. This robust immune response effectively inhibited tumor growth. Overall, these innovative DMA-lipidoids demonstrate strong spleen-targeting capabilities, offering a transformative platform for mRNA vaccine development.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.