Francisco Montilla, Carlos J. Carrasco and Agustín Galindo
{"title":"Chirality in metal-based antimicrobial agents: a growing frontier in biomedical research","authors":"Francisco Montilla, Carlos J. Carrasco and Agustín Galindo","doi":"10.1039/D5DT00400D","DOIUrl":null,"url":null,"abstract":"<p >Chirality is increasingly being recognised as a valuable tool in the design of novel metal complexes aimed at combating antimicrobial resistance. Chiral metal complexes possess unique spatial configurations that enable selective interactions with biological targets, providing innovative solutions for treating diseases such as cancer and antimicrobial-resistant infections. Although the relationship between the chirality of metal complexes and their antimicrobial activity was initially highlighted by Dwyer and collaborators in a seminal mid-20th-century study, subsequent research exploring this intriguing relationship has been limited. The few documented cases of enantiomer-dependent biocidal activity are mainly limited to a series of chiral silver complexes recently investigated by our group and the Nomiya research team, which demonstrate enhanced antimicrobial efficacy of specific enantiomers.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 17","pages":" 6778-6784"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dt/d5dt00400d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dt/d5dt00400d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Chirality is increasingly being recognised as a valuable tool in the design of novel metal complexes aimed at combating antimicrobial resistance. Chiral metal complexes possess unique spatial configurations that enable selective interactions with biological targets, providing innovative solutions for treating diseases such as cancer and antimicrobial-resistant infections. Although the relationship between the chirality of metal complexes and their antimicrobial activity was initially highlighted by Dwyer and collaborators in a seminal mid-20th-century study, subsequent research exploring this intriguing relationship has been limited. The few documented cases of enantiomer-dependent biocidal activity are mainly limited to a series of chiral silver complexes recently investigated by our group and the Nomiya research team, which demonstrate enhanced antimicrobial efficacy of specific enantiomers.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.