{"title":"Discovery of Phenylacylpiperidine as Novel sEH Inhibitors through Scaffold Hopping of Natural Stilbene","authors":"Jing Ding, Min-Zhen Zhu, Xiao-Yu Du, Si-Meng Liu, Hao Wang, Xing-Zhou Liu, Wei-Song Xie, Hong-Le Ma, Yue Feng, Xin-Hong Zhu, Jian-Hua Liang","doi":"10.1021/acs.jmedchem.5c00685","DOIUrl":null,"url":null,"abstract":"Despite the development of soluble epoxide hydrolase (sEH) inhibitors as a promising therapeutic approach, no drug candidate has successfully progressed beyond clinical phase II, highlighting the need for a novel chemotype with improved in vivo potency, pharmacokinetics and safety. In this study, we discovered a phenylacetylpiperidine-based compound, <b>77</b> (lab code: <b>DJ-89</b>; IC<sub>50</sub>: 0.51 nM), through strategic scaffold hopping from previously reported styrene-based sEH inhibitors. Resolving the cocrystal structure and mode-of-action studies revealed a distinct profile compared to well-known sEH inhibitors <b>TPPU</b> and <b>EC5026</b> (IC<sub>50</sub>: 44, 19 nM). Notably, <b>77</b> demonstrated additional interactions with sEH compared to <b>TPPU</b>, and uniquely enhanced anti-inflammatory factors, including EET levels and IL-10, a capability not observed with <b>EC5026</b>. Moreover, <b>77</b> showed excellent pharmacokinetics and safety, positioning it as a promising candidate for treating both acute and chronic inflammatory diseases, including rheumatoid arthritis, leveraging phenylacylpiperidine scaffolds in sEH-targeted therapies.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"60 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.5c00685","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the development of soluble epoxide hydrolase (sEH) inhibitors as a promising therapeutic approach, no drug candidate has successfully progressed beyond clinical phase II, highlighting the need for a novel chemotype with improved in vivo potency, pharmacokinetics and safety. In this study, we discovered a phenylacetylpiperidine-based compound, 77 (lab code: DJ-89; IC50: 0.51 nM), through strategic scaffold hopping from previously reported styrene-based sEH inhibitors. Resolving the cocrystal structure and mode-of-action studies revealed a distinct profile compared to well-known sEH inhibitors TPPU and EC5026 (IC50: 44, 19 nM). Notably, 77 demonstrated additional interactions with sEH compared to TPPU, and uniquely enhanced anti-inflammatory factors, including EET levels and IL-10, a capability not observed with EC5026. Moreover, 77 showed excellent pharmacokinetics and safety, positioning it as a promising candidate for treating both acute and chronic inflammatory diseases, including rheumatoid arthritis, leveraging phenylacylpiperidine scaffolds in sEH-targeted therapies.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.