Remodeling of Effector and Regulatory T Cells by Capture and Utilization of miRNAs Using Nanocomposite Hydrogel for Tumor-Specific Photothermal Immunotherapy
Li Chen, Man Zhu, Handan Zhang, Wenjun Tang, Jie Liu, Xiaoyu Tang, Xiaowei Chang, Zeren Zhu, Tao Liu, Lin Weng, Yanmin Zhang, Xin Chen
{"title":"Remodeling of Effector and Regulatory T Cells by Capture and Utilization of miRNAs Using Nanocomposite Hydrogel for Tumor-Specific Photothermal Immunotherapy","authors":"Li Chen, Man Zhu, Handan Zhang, Wenjun Tang, Jie Liu, Xiaoyu Tang, Xiaowei Chang, Zeren Zhu, Tao Liu, Lin Weng, Yanmin Zhang, Xin Chen","doi":"10.1021/acsnano.4c18801","DOIUrl":null,"url":null,"abstract":"In immunotherapy for malignant tumors, the dysregulation of the balance between effector T cells and regulatory T cells (Tregs) and the uncertain efficacy due to individual differences have been considered as two critical challenges. In this study, we engineered an injectable nanocomposite hydrogel system (SNAs@M-Gel) capable of suppressing Treg proliferation and blocking PD-1/PD-L1-mediated immune evasion effectively, achieved through the stimulus-responsive modulation of multiple tumor-associated microRNAs. Simultaneously, this system enables microRNA-dependent photothermal immunotherapy, facilitating a highly efficient and personalized approach to tumor treatment. Specifically, oxidized sodium alginate (OSA) and cancer cell membrane (CCM)-encapsulated spherical nucleic acid nanoparticles (SNAs@M) were used to construct the SNAs@M-Gel hydrogel in situ at the tumor site through the formation of pH-sensitive Schiff base bonding and cross-linking using endogenous calcium ions (Ca<sup>2+</sup>). During treatment, SNAs@M-Gel was retained locally for up to 10 days, and SNAs@M nanoparticles were continuously released into the tumor microenvironment. Through the targeting ability of CCM, SNAs@M precisely entered tumor cells and specifically hybridized with the overexpressed miR-214 and miR-130a, leading to a significant downregulation of PD-L1 expression on tumor cells and the restoration of cytotoxic T lymphocyte (CTL) function suppressed by Tregs, thereby remodeling the immune microenvironment. In addition, miRNAs functioned as cross-linking agents, facilitating the aggregation of SNAs and allowing the localized production of photothermal agents directly inside tumor cells, which, under near-infrared (NIR) irradiation, promoted highly selective photothermal therapy. This cascade of events not only led to the destruction of the primary tumor but also resulted in the release of a substantial number of tumor-related antigens, which triggered the maturation of adjacent dendritic cells (DCs) and subsequent priming of tumor-specific CTLs, while simultaneously depleting Tregs, thereby reversing the tumor-promoting immune microenvironment and enhancing the overall therapeutic efficacy of photothermal immunotherapy.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"17 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18801","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In immunotherapy for malignant tumors, the dysregulation of the balance between effector T cells and regulatory T cells (Tregs) and the uncertain efficacy due to individual differences have been considered as two critical challenges. In this study, we engineered an injectable nanocomposite hydrogel system (SNAs@M-Gel) capable of suppressing Treg proliferation and blocking PD-1/PD-L1-mediated immune evasion effectively, achieved through the stimulus-responsive modulation of multiple tumor-associated microRNAs. Simultaneously, this system enables microRNA-dependent photothermal immunotherapy, facilitating a highly efficient and personalized approach to tumor treatment. Specifically, oxidized sodium alginate (OSA) and cancer cell membrane (CCM)-encapsulated spherical nucleic acid nanoparticles (SNAs@M) were used to construct the SNAs@M-Gel hydrogel in situ at the tumor site through the formation of pH-sensitive Schiff base bonding and cross-linking using endogenous calcium ions (Ca2+). During treatment, SNAs@M-Gel was retained locally for up to 10 days, and SNAs@M nanoparticles were continuously released into the tumor microenvironment. Through the targeting ability of CCM, SNAs@M precisely entered tumor cells and specifically hybridized with the overexpressed miR-214 and miR-130a, leading to a significant downregulation of PD-L1 expression on tumor cells and the restoration of cytotoxic T lymphocyte (CTL) function suppressed by Tregs, thereby remodeling the immune microenvironment. In addition, miRNAs functioned as cross-linking agents, facilitating the aggregation of SNAs and allowing the localized production of photothermal agents directly inside tumor cells, which, under near-infrared (NIR) irradiation, promoted highly selective photothermal therapy. This cascade of events not only led to the destruction of the primary tumor but also resulted in the release of a substantial number of tumor-related antigens, which triggered the maturation of adjacent dendritic cells (DCs) and subsequent priming of tumor-specific CTLs, while simultaneously depleting Tregs, thereby reversing the tumor-promoting immune microenvironment and enhancing the overall therapeutic efficacy of photothermal immunotherapy.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.