Fleurie M. Kelley, Anas Ani, Emily G. Pinlac, Bridget Linders, Bruna Favetta, Mayur Barai, Yuchen Ma, Arjun Singh, Gregory L. Dignon, Yuwei Gu, Benjamin S. Schuster
{"title":"Controlled and orthogonal partitioning of large particles into biomolecular condensates","authors":"Fleurie M. Kelley, Anas Ani, Emily G. Pinlac, Bridget Linders, Bruna Favetta, Mayur Barai, Yuchen Ma, Arjun Singh, Gregory L. Dignon, Yuwei Gu, Benjamin S. Schuster","doi":"10.1038/s41467-025-58900-5","DOIUrl":null,"url":null,"abstract":"<p>Partitioning of client molecules into biomolecular condensates is critical for regulating the composition and function of condensates. Previous studies suggest that client size limits partitioning. Here, we ask whether large clients, such as macromolecular complexes and nanoparticles, can partition into condensates based on particle-condensate interactions. We seek to discover the fundamental biophysical principles that govern particle inclusion in or exclusion from condensates, using polymer nanoparticles surface-functionalized with biotin or oligonucleotides. Based on our experiments, coarse-grained molecular dynamics simulations, and theory, we conclude that arbitrarily large particles can controllably partition into condensates given sufficiently strong condensate-particle interactions. Remarkably, we also observe that beads with distinct surface chemistries partition orthogonally into immiscible condensates. These findings may provide insights into how various cellular processes are achieved based on partitioning of large clients into biomolecular condensates, and they offer design principles for drug delivery systems that selectively target disease-related condensates.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58900-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Partitioning of client molecules into biomolecular condensates is critical for regulating the composition and function of condensates. Previous studies suggest that client size limits partitioning. Here, we ask whether large clients, such as macromolecular complexes and nanoparticles, can partition into condensates based on particle-condensate interactions. We seek to discover the fundamental biophysical principles that govern particle inclusion in or exclusion from condensates, using polymer nanoparticles surface-functionalized with biotin or oligonucleotides. Based on our experiments, coarse-grained molecular dynamics simulations, and theory, we conclude that arbitrarily large particles can controllably partition into condensates given sufficiently strong condensate-particle interactions. Remarkably, we also observe that beads with distinct surface chemistries partition orthogonally into immiscible condensates. These findings may provide insights into how various cellular processes are achieved based on partitioning of large clients into biomolecular condensates, and they offer design principles for drug delivery systems that selectively target disease-related condensates.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.