Environmental limitations of PTFE for ultralow friction composites and alternatives to using liquid lubricants

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Yuri Park, Si-Geun Choi, Chan-Hyun Cho, Jong-Hyoung Kim, Jin-Young Park, Myoung-Hwan Park
{"title":"Environmental limitations of PTFE for ultralow friction composites and alternatives to using liquid lubricants","authors":"Yuri Park, Si-Geun Choi, Chan-Hyun Cho, Jong-Hyoung Kim, Jin-Young Park, Myoung-Hwan Park","doi":"10.26599/frict.2025.9441022","DOIUrl":null,"url":null,"abstract":"<p>The importance of reducing energy-related environmental and economic issues by extending the lifetime and efficiency of mechanical systems has increased. The use of ultralow friction composite materials is one approach to eliminate frictional wear. Polytetrafluoroethylene (PTFE) has excellent low friction properties and has been used to reduce frictional wear in various industrial fields. However, degradation of PTFE in natural environments poses challenges owing to its stable chemical structure, which is characterized by strong C‒F bonds. Furthermore, PTFE can accumulate in the living body and environment over a long period of time. Consequently, it is resistant to physiological filtration or decomposition. Hence, it is sometimes called a “forever chemical”. Therefore, PTFE, which is a type of poly- and perfluoroalkyl substance (PFAS), is increasingly being adopted as a regulated substance. This review focuses on several aspects of PTFE and PFAS, reasons for their adoption as regulated chemicals, and research on alternatives to PTFE, particularly the use of liquid lubricants.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"120 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441022","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of reducing energy-related environmental and economic issues by extending the lifetime and efficiency of mechanical systems has increased. The use of ultralow friction composite materials is one approach to eliminate frictional wear. Polytetrafluoroethylene (PTFE) has excellent low friction properties and has been used to reduce frictional wear in various industrial fields. However, degradation of PTFE in natural environments poses challenges owing to its stable chemical structure, which is characterized by strong C‒F bonds. Furthermore, PTFE can accumulate in the living body and environment over a long period of time. Consequently, it is resistant to physiological filtration or decomposition. Hence, it is sometimes called a “forever chemical”. Therefore, PTFE, which is a type of poly- and perfluoroalkyl substance (PFAS), is increasingly being adopted as a regulated substance. This review focuses on several aspects of PTFE and PFAS, reasons for their adoption as regulated chemicals, and research on alternatives to PTFE, particularly the use of liquid lubricants.

Abstract Image

用于超低摩擦复合材料的聚四氟乙烯的环境限制以及使用液体润滑剂的替代品
通过延长机械系统的寿命和效率来减少与能源有关的环境和经济问题的重要性已经增加。使用超低摩擦复合材料是消除摩擦磨损的一种方法。聚四氟乙烯(PTFE)具有优异的低摩擦性能,在各种工业领域被用于减少摩擦磨损。然而,由于其稳定的化学结构,其特征是强C-F键,在自然环境中降解聚四氟乙烯带来了挑战。此外,聚四氟乙烯可以在生物体内和环境中长期积累。因此,它能抵抗生理过滤或分解。因此,它有时被称为“永远的化学物质”。因此,聚四氟乙烯(PTFE)作为一种多氟和全氟烷基物质(PFAS)越来越多地被采用为管制物质。本文综述了聚四氟乙烯和全氟乙烯的几个方面,它们作为管制化学品被采用的原因,以及聚四氟乙烯替代品的研究,特别是液体润滑剂的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信