Fernanda Martins Rodrigues, Nadezhda V. Terekhanova, Kathleen J. Imbach, Karl R. Clauser, Myvizhi Esai Selvan, Isabel Mendizabal, Yifat Geffen, Yo Akiyama, Myranda Maynard, Tomer M. Yaron, Yize Li, Song Cao, Erik P. Storrs, Olivia S. Gonda, Adrian Gaite-Reguero, Akshay Govindan, Emily A. Kawaler, Matthew A. Wyczalkowski, Robert J. Klein, Berk Turhan, Yige Wu
{"title":"Precision proteogenomics reveals pan-cancer impact of germline variants","authors":"Fernanda Martins Rodrigues, Nadezhda V. Terekhanova, Kathleen J. Imbach, Karl R. Clauser, Myvizhi Esai Selvan, Isabel Mendizabal, Yifat Geffen, Yo Akiyama, Myranda Maynard, Tomer M. Yaron, Yize Li, Song Cao, Erik P. Storrs, Olivia S. Gonda, Adrian Gaite-Reguero, Akshay Govindan, Emily A. Kawaler, Matthew A. Wyczalkowski, Robert J. Klein, Berk Turhan, Yige Wu","doi":"10.1016/j.cell.2025.03.026","DOIUrl":null,"url":null,"abstract":"We investigate the impact of germline variants on cancer patients’ proteomes, encompassing 1,064 individuals across 10 cancer types. We introduced an approach, “precision peptidomics,” mapping 337,469 coding germline variants onto peptides from patients’ mass spectrometry data, revealing their potential impact on post-translational modifications, protein stability, allele-specific expression, and protein structure by leveraging the relevant protein databases. We identified rare pathogenic and common germline variants in cancer genes potentially affecting proteomic features, including variants altering protein abundance and structure and variants in kinases (<em>ERBB2</em> and <em>MAP2K2</em>) impacting phosphorylation. Precision peptidome analysis predicted destabilizing events in signal-regulatory protein alpha (SIRPA) and glial fibrillary acid protein (GFAP), relevant to immunomodulation and glioblastoma diagnostics, respectively. Genome-wide association studies identified quantitative trait loci for gene expression and protein levels, spanning millions of SNPs and thousands of proteins. Polygenic risk scores correlated with distal effects from risk variants. Our findings emphasize the contribution of germline genetics to cancer heterogeneity and high-throughput precision peptidomics.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"39 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.03.026","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the impact of germline variants on cancer patients’ proteomes, encompassing 1,064 individuals across 10 cancer types. We introduced an approach, “precision peptidomics,” mapping 337,469 coding germline variants onto peptides from patients’ mass spectrometry data, revealing their potential impact on post-translational modifications, protein stability, allele-specific expression, and protein structure by leveraging the relevant protein databases. We identified rare pathogenic and common germline variants in cancer genes potentially affecting proteomic features, including variants altering protein abundance and structure and variants in kinases (ERBB2 and MAP2K2) impacting phosphorylation. Precision peptidome analysis predicted destabilizing events in signal-regulatory protein alpha (SIRPA) and glial fibrillary acid protein (GFAP), relevant to immunomodulation and glioblastoma diagnostics, respectively. Genome-wide association studies identified quantitative trait loci for gene expression and protein levels, spanning millions of SNPs and thousands of proteins. Polygenic risk scores correlated with distal effects from risk variants. Our findings emphasize the contribution of germline genetics to cancer heterogeneity and high-throughput precision peptidomics.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.