Xinxin Song, Zhuan Zhou, Jiao Liu, Jingbo Li, Chunhua Yu, Herbert J. Zeh, Daniel J. Klionsky, Brent R. Stockwell, Jiayi Wang, Rui Kang, Guido Kroemer, Daolin Tang
{"title":"Cytosolic cytochrome c represses ferroptosis","authors":"Xinxin Song, Zhuan Zhou, Jiao Liu, Jingbo Li, Chunhua Yu, Herbert J. Zeh, Daniel J. Klionsky, Brent R. Stockwell, Jiayi Wang, Rui Kang, Guido Kroemer, Daolin Tang","doi":"10.1016/j.cmet.2025.03.014","DOIUrl":null,"url":null,"abstract":"The release of cytochrome <em>c</em>, somatic (CYCS) from mitochondria to the cytosol is an established trigger of caspase-dependent apoptosis. Here, we unveil an unexpected role for cytosolic CYCS in inhibiting ferroptosis—a form of oxidative cell death driven by uncontrolled lipid peroxidation. Mass spectrometry and site-directed mutagenesis revealed the existence of a cytosolic complex composed of inositol polyphosphate-4-phosphatase type I A (INPP4A) and CYCS. This CYCS-INPP4A complex is distinct from the CYCS-apoptotic peptidase activating factor 1 (APAF1)-caspase-9 apoptosome formed during mitochondrial apoptosis. CYCS boosts INPP4A activity, leading to increased formation of phosphatidylinositol-3-phosphate, which prevents phospholipid peroxidation and plasma membrane rupture, thus averting ferroptotic cell death. Unbiased screening led to the identification of the small-molecule compound 10A3, which disrupts the CYCS-INPP4A interaction. 10A3 sensitized cultured cells and tumors implanted in immunocompetent mice to ferroptosis. Collectively, these findings redefine our understanding of cytosolic CYCS complexes that govern diverse cell death pathways.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"6 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.03.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The release of cytochrome c, somatic (CYCS) from mitochondria to the cytosol is an established trigger of caspase-dependent apoptosis. Here, we unveil an unexpected role for cytosolic CYCS in inhibiting ferroptosis—a form of oxidative cell death driven by uncontrolled lipid peroxidation. Mass spectrometry and site-directed mutagenesis revealed the existence of a cytosolic complex composed of inositol polyphosphate-4-phosphatase type I A (INPP4A) and CYCS. This CYCS-INPP4A complex is distinct from the CYCS-apoptotic peptidase activating factor 1 (APAF1)-caspase-9 apoptosome formed during mitochondrial apoptosis. CYCS boosts INPP4A activity, leading to increased formation of phosphatidylinositol-3-phosphate, which prevents phospholipid peroxidation and plasma membrane rupture, thus averting ferroptotic cell death. Unbiased screening led to the identification of the small-molecule compound 10A3, which disrupts the CYCS-INPP4A interaction. 10A3 sensitized cultured cells and tumors implanted in immunocompetent mice to ferroptosis. Collectively, these findings redefine our understanding of cytosolic CYCS complexes that govern diverse cell death pathways.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.