A New Hybrid Control Scheme for Tracking Control Problem of AUVs With System Uncertainties and External Disruptions

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Km Shelly Chaudhary, Naveen Kumar
{"title":"A New Hybrid Control Scheme for Tracking Control Problem of AUVs With System Uncertainties and External Disruptions","authors":"Km Shelly Chaudhary,&nbsp;Naveen Kumar","doi":"10.1002/rob.22492","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Autonomous underwater vehicles (AUVs) are highly nonlinear, coupled, uncertain, and time-varying mechatronic systems that inevitably suffer from uncertainties and environmental disturbances. This study presents an intelligent hybrid fractional-order fast terminal sliding mode controller that utilizes the positive aspects of a model-free control approach, designed to enhance the tracking control of AUVs. Using a nonlinear fractional-order fast terminal sliding manifold, the proposed control approach integrates intelligent hybrid sliding mode control with fractional calculus to guarantee finite-time convergence of system states and provide explicit settling time estimates. The nonlinear dynamics of the AUVs is modeled using radial basis function neural networks, while bound on uncertainties, external disturbances, and the reconstruction errors are accommodated by the adaptive compensator. By using a fast terminal-type sliding mode reaching law, the controller exhibits enhanced transient response, resulting in robustness and finite-time convergence of tracking errors. Using fractional-order Barbalat's lemma and the Lyapunov technique, the stability of the control scheme is validated. The effectiveness of the proposed control scheme is validated by a numerical simulation study, which also shows enhanced trajectory tracking performance for AUVs over existing control schemes. This hybrid technique addresses the complicated nature of AUV dynamics in unpredictable circumstances by utilizing the advantages of model-free intelligent control and fractional calculus.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 3","pages":"716-741"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22492","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous underwater vehicles (AUVs) are highly nonlinear, coupled, uncertain, and time-varying mechatronic systems that inevitably suffer from uncertainties and environmental disturbances. This study presents an intelligent hybrid fractional-order fast terminal sliding mode controller that utilizes the positive aspects of a model-free control approach, designed to enhance the tracking control of AUVs. Using a nonlinear fractional-order fast terminal sliding manifold, the proposed control approach integrates intelligent hybrid sliding mode control with fractional calculus to guarantee finite-time convergence of system states and provide explicit settling time estimates. The nonlinear dynamics of the AUVs is modeled using radial basis function neural networks, while bound on uncertainties, external disturbances, and the reconstruction errors are accommodated by the adaptive compensator. By using a fast terminal-type sliding mode reaching law, the controller exhibits enhanced transient response, resulting in robustness and finite-time convergence of tracking errors. Using fractional-order Barbalat's lemma and the Lyapunov technique, the stability of the control scheme is validated. The effectiveness of the proposed control scheme is validated by a numerical simulation study, which also shows enhanced trajectory tracking performance for AUVs over existing control schemes. This hybrid technique addresses the complicated nature of AUV dynamics in unpredictable circumstances by utilizing the advantages of model-free intelligent control and fractional calculus.

具有系统不确定性和外部干扰的水下机器人跟踪控制问题的一种新的混合控制方案
自主水下航行器(auv)是高度非线性、耦合、不确定性和时变的机电系统,不可避免地会受到不确定性和环境干扰。本研究提出了一种智能混合分数阶快速终端滑模控制器,该控制器利用无模型控制方法的积极方面,旨在增强auv的跟踪控制。该控制方法采用非线性分数阶快速终端滑动流形,将智能混合滑模控制与分数阶微积分相结合,保证系统状态的有限时间收敛,并提供明确的沉降时间估计。采用径向基函数神经网络对水下机器人的非线性动力学进行建模,并采用自适应补偿器对不确定性、外部干扰和重构误差进行补偿。通过采用快速终端型滑模逼近律,增强了控制器的瞬态响应,使跟踪误差具有鲁棒性和有限时间收敛性。利用分数阶Barbalat引理和Lyapunov技术,验证了控制方案的稳定性。数值仿真研究验证了所提控制方案的有效性,也表明与现有控制方案相比,auv的轨迹跟踪性能有所提高。这种混合技术通过利用无模型智能控制和分数阶微积分的优势,解决了水下航行器在不可预测环境下动力学的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信