Stephen Parris, John T. Lovell, Feng Ding, Zhenzhen Zhang, Jim Olvey, Mike Olvey, Jeremy Schmutz, Jane Grimwood, Avinash Sreedasyam, Sonika Kumar, Zhigang Li, Priyanka Joshi, Jerry W. Jenkins, Christopher Plott, Ada Stewart, Jenell Webber, Warwick N. Stiller, Don C. Jones, Christopher A. Saski
{"title":"Polyploidy-mediated variations in glutamate receptor proteins linked to Fusarium wilt resistance in upland cotton","authors":"Stephen Parris, John T. Lovell, Feng Ding, Zhenzhen Zhang, Jim Olvey, Mike Olvey, Jeremy Schmutz, Jane Grimwood, Avinash Sreedasyam, Sonika Kumar, Zhigang Li, Priyanka Joshi, Jerry W. Jenkins, Christopher Plott, Ada Stewart, Jenell Webber, Warwick N. Stiller, Don C. Jones, Christopher A. Saski","doi":"10.1111/tpj.70125","DOIUrl":null,"url":null,"abstract":"<p>Cotton production in the US faces a serious threat from <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> race 4 (FOV4), a soil-borne fungus causing <i>Fusarium</i> wilt by infecting the roots and vascular system of susceptible cotton, leading to rapid wilting and death. Here, we investigate genetic mechanisms of resistance to FOV4 in the highly resistant upland cotton genotype “U1” using an early-generation segregating biparental population (“U1” × “CSX8308”) with comprehensive genomic resources. Reference-grade genomic assemblies of the parents revealed minor structural variations between “U1” haplotypes, a high degree of collinearity at chromosome synteny and micro-synteny levels, and significant divergence from “CSX8308” with 8.9 million SNPs. QTL analysis identified significant markers on chromosomes D03 and A02 linked to reduced <i>Fusarium</i> wilt severity. Within these regions, two glutamate-receptor-like (GLR) genes showed structural variation and overlapped between translocated segments on A02 and D03, suggesting a rare but important reinforcing effect of parallel evolution between susceptible and resistant genotypes. Transcriptome profiles of “U1” under FOV4 infection reveal activation of calcium-binding proteins and transcription factors regulating plant hormones (ethylene, abscisic acid, jasmonic acid, and salicylic acid), along with enzymes involved in cell wall remodeling and phytoalexin production. Advancing cotton improvement depends on incorporating durable genetic disease resistance into high-yielding, high-quality cultivars.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70125","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cotton production in the US faces a serious threat from Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4), a soil-borne fungus causing Fusarium wilt by infecting the roots and vascular system of susceptible cotton, leading to rapid wilting and death. Here, we investigate genetic mechanisms of resistance to FOV4 in the highly resistant upland cotton genotype “U1” using an early-generation segregating biparental population (“U1” × “CSX8308”) with comprehensive genomic resources. Reference-grade genomic assemblies of the parents revealed minor structural variations between “U1” haplotypes, a high degree of collinearity at chromosome synteny and micro-synteny levels, and significant divergence from “CSX8308” with 8.9 million SNPs. QTL analysis identified significant markers on chromosomes D03 and A02 linked to reduced Fusarium wilt severity. Within these regions, two glutamate-receptor-like (GLR) genes showed structural variation and overlapped between translocated segments on A02 and D03, suggesting a rare but important reinforcing effect of parallel evolution between susceptible and resistant genotypes. Transcriptome profiles of “U1” under FOV4 infection reveal activation of calcium-binding proteins and transcription factors regulating plant hormones (ethylene, abscisic acid, jasmonic acid, and salicylic acid), along with enzymes involved in cell wall remodeling and phytoalexin production. Advancing cotton improvement depends on incorporating durable genetic disease resistance into high-yielding, high-quality cultivars.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.