{"title":"Unravelling the Effects of Climate Extremes and Land Use on Greenhouse Gas Emissions in the Yangtze River Riparian: Soil Columns Experiments","authors":"Kemal Adem Abdela, Shun Li, Qiong Zhang, Giri Kattel, Jun-Ming Wu, Xiaoqiao Tang, Zhi-Guo Yu","doi":"10.1002/eco.70033","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>River riparian basins play a crucial role in mitigating greenhouse gas (GHG) emissions through carbon sequestration and nitrogen sinks. However, increased ecological stresses led to the release of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O. This study aimed to investigate how extreme temperatures, water levels, moisture content, land use changes and soil composition influence GHG emissions in the riparian corridor and to recommend mitigation techniques. It was carried out at the Yangtze River Riparian zone, China, using soil column testing. It used soil column testing. The results showed that extreme temperatures caused the highest emissions of CO₂ (29–45%), CH₄ (24–43%) and N₂O (27–33%). This was due to increased soil temperatures and accelerated organic carbon/nitrogen decomposition. Conversely, control and wet–dry cycles absorbed CO<sub>2</sub> (1–3%), CH<sub>4</sub> (3–10%) and N<sub>2</sub>O (1–21%) by improving soil aeration, increased oxygen availability, soil structure, stable water table and low temperature change. Grasses in riparian areas also improved carbon sinks. Highest water levels had lowest gas concentrations and emissions due to low oxygen level. Adaptive wet-dry cycles, grass cover and better water table management can restore riparian areas, maintain soil moisture, balance soil carbon/nitrogen levels and mitigate climate change by improving soil quality. Dissolved organic matter fluorescence (DOMFluor) components are essential for soil carbon dynamics, aquatic biome safety, nutrient cycling and ecological balance in riparian zones. The study recommends implementing restoration practices, managing soil moisture, afforestation, regulating temperature and monitoring water tables to mitigate GHG emissions and address climate change. Future policies should focus on promoting resilient land use and ecosystems.</p>\n </div>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"18 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.70033","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
River riparian basins play a crucial role in mitigating greenhouse gas (GHG) emissions through carbon sequestration and nitrogen sinks. However, increased ecological stresses led to the release of CO2, CH4 and N2O. This study aimed to investigate how extreme temperatures, water levels, moisture content, land use changes and soil composition influence GHG emissions in the riparian corridor and to recommend mitigation techniques. It was carried out at the Yangtze River Riparian zone, China, using soil column testing. It used soil column testing. The results showed that extreme temperatures caused the highest emissions of CO₂ (29–45%), CH₄ (24–43%) and N₂O (27–33%). This was due to increased soil temperatures and accelerated organic carbon/nitrogen decomposition. Conversely, control and wet–dry cycles absorbed CO2 (1–3%), CH4 (3–10%) and N2O (1–21%) by improving soil aeration, increased oxygen availability, soil structure, stable water table and low temperature change. Grasses in riparian areas also improved carbon sinks. Highest water levels had lowest gas concentrations and emissions due to low oxygen level. Adaptive wet-dry cycles, grass cover and better water table management can restore riparian areas, maintain soil moisture, balance soil carbon/nitrogen levels and mitigate climate change by improving soil quality. Dissolved organic matter fluorescence (DOMFluor) components are essential for soil carbon dynamics, aquatic biome safety, nutrient cycling and ecological balance in riparian zones. The study recommends implementing restoration practices, managing soil moisture, afforestation, regulating temperature and monitoring water tables to mitigate GHG emissions and address climate change. Future policies should focus on promoting resilient land use and ecosystems.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.