M2CS: A Multimodal and Campus-Scapes Dataset for Dynamic SLAM and Moving Object Perception

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Huanfeng Zhao, Meibao Yao, Yan Zhao, Yao Jiang, Hongyan Zhang, Xueming Xiao, Ke Gao
{"title":"M2CS: A Multimodal and Campus-Scapes Dataset for Dynamic SLAM and Moving Object Perception","authors":"Huanfeng Zhao,&nbsp;Meibao Yao,&nbsp;Yan Zhao,&nbsp;Yao Jiang,&nbsp;Hongyan Zhang,&nbsp;Xueming Xiao,&nbsp;Ke Gao","doi":"10.1002/rob.22468","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The deployment of the robotic system that executes specific task is being challenged by the prevalence of dynamic objects in real-world scenes. Two robotic tasks sparked by this challenge, known as dynamic Simultaneous Localization and Mapping (SLAM) and moving object perception, are crucial for enhancing system robustness and reinforcing environment awareness. Existing public datasets are diverse in platforms, sensor combinations, scenarios, and label annotations, but few adequately benchmark the above tasks. To fill this gap, we introduce the multimodal and campus-scapes (M2CS) dataset, providing robot-centric synchronized LiDAR-Inertial-Visual-GNSS data with 3D moving object annotation in specific dynamic scenarios. The dataset exhibits variation in dynamic object types and densities, annotating over 160,000 Light Detection and Ranging (LiDAR) scans and releasing ground truth of trajectories acquired by the GNSS-RTK/INS system. The dataset evaluates existing SLAM and moving object perception methods, driving relevant research to overcome this challenge. We publish the M2CS dataset on the website (https://github.com/Zhaohuanfeng/M2CS) and hope it promotes research on robotics in complex environment.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 3","pages":"787-805"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22468","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The deployment of the robotic system that executes specific task is being challenged by the prevalence of dynamic objects in real-world scenes. Two robotic tasks sparked by this challenge, known as dynamic Simultaneous Localization and Mapping (SLAM) and moving object perception, are crucial for enhancing system robustness and reinforcing environment awareness. Existing public datasets are diverse in platforms, sensor combinations, scenarios, and label annotations, but few adequately benchmark the above tasks. To fill this gap, we introduce the multimodal and campus-scapes (M2CS) dataset, providing robot-centric synchronized LiDAR-Inertial-Visual-GNSS data with 3D moving object annotation in specific dynamic scenarios. The dataset exhibits variation in dynamic object types and densities, annotating over 160,000 Light Detection and Ranging (LiDAR) scans and releasing ground truth of trajectories acquired by the GNSS-RTK/INS system. The dataset evaluates existing SLAM and moving object perception methods, driving relevant research to overcome this challenge. We publish the M2CS dataset on the website (https://github.com/Zhaohuanfeng/M2CS) and hope it promotes research on robotics in complex environment.

M2CS:用于动态SLAM和移动物体感知的多模态和校园景观数据集
在现实世界中,动态对象的流行对执行特定任务的机器人系统的部署提出了挑战。由这一挑战引发的两项机器人任务,即动态同步定位和映射(SLAM)和移动物体感知,对于增强系统鲁棒性和增强环境意识至关重要。现有的公共数据集在平台、传感器组合、场景和标签注释方面是多种多样的,但很少有足够的基准测试上述任务。为了填补这一空白,我们引入了多模态和校园景观(M2CS)数据集,提供以机器人为中心的同步LiDAR-Inertial-Visual-GNSS数据,并在特定的动态场景中对3D移动物体进行了注释。该数据集展示了动态目标类型和密度的变化,注释了超过16万次光探测和测距(LiDAR)扫描,并发布了GNSS-RTK/INS系统获得的轨迹的地面真相。该数据集评估了现有的SLAM和运动物体感知方法,推动了相关研究来克服这一挑战。我们在网站(https://github.com/Zhaohuanfeng/M2CS)上发布了M2CS数据集,希望它能促进复杂环境下机器人技术的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信