Highly Stable and Conductive 1,3-Dioxolane/Hydrocarbon Based Electrolyte Solvent for Advanced Lithium-Sulfur Batteries

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Faiz Ahmed, Defu Li, Gao Liu
{"title":"Highly Stable and Conductive 1,3-Dioxolane/Hydrocarbon Based Electrolyte Solvent for Advanced Lithium-Sulfur Batteries","authors":"Faiz Ahmed,&nbsp;Defu Li,&nbsp;Gao Liu","doi":"10.1002/celc.202400588","DOIUrl":null,"url":null,"abstract":"<p>Developing effective electrolytes is crucial for boosting the performance of Lithium-Sulfur (LiS) rechargeable battery. Recent improvements in electrolyte formulations have enhanced cyclability by increasing electrochemical stability at the electrode interfaces. However, achieving both high ionic conductivity (σ) and stability at these interfaces simultaneously remains a significant challenge. In this study, we utilized a strategy to suppress polysulfide dissolution by employing a mixture of 1,3-dioxolane (DOL) and hydrocarbon solvents with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte salt. Compared to the conventional electrolyte solution, which is 1 M LiTFSI salt in a 50/50 vol % mixture of DOL and dimethoxy ethane (DME), the LiTFSI electrolyte with DOL/hydrocarbon solvents demonstrate better cycling stability, compatibility with the Li-metal anode, and a high specific discharge capacity (Csp). Among the various DOL/hydrocarbon and LiTFSI electrolyte salts, the combination of DOL and n-hexane, a linear hydrocarbon, with LiTFSI electrolyte salt, (DnH40LiTFSI) exhibits remarkable σ (6.5×10<sup>−3</sup> S/cm at 30 °C), compatibility with the Li-metal anode, an initial Csp of ca. 1264 mAh/g, cycling stability (Csp and Coulombic efficiency are 811 mAh/g and 98.09 % after 120 cycles) at 0.1 C by forming a good protective layer on the Li-metal surface and preventing polysulfide dissolution.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 8","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400588","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400588","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing effective electrolytes is crucial for boosting the performance of Lithium-Sulfur (LiS) rechargeable battery. Recent improvements in electrolyte formulations have enhanced cyclability by increasing electrochemical stability at the electrode interfaces. However, achieving both high ionic conductivity (σ) and stability at these interfaces simultaneously remains a significant challenge. In this study, we utilized a strategy to suppress polysulfide dissolution by employing a mixture of 1,3-dioxolane (DOL) and hydrocarbon solvents with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte salt. Compared to the conventional electrolyte solution, which is 1 M LiTFSI salt in a 50/50 vol % mixture of DOL and dimethoxy ethane (DME), the LiTFSI electrolyte with DOL/hydrocarbon solvents demonstrate better cycling stability, compatibility with the Li-metal anode, and a high specific discharge capacity (Csp). Among the various DOL/hydrocarbon and LiTFSI electrolyte salts, the combination of DOL and n-hexane, a linear hydrocarbon, with LiTFSI electrolyte salt, (DnH40LiTFSI) exhibits remarkable σ (6.5×10−3 S/cm at 30 °C), compatibility with the Li-metal anode, an initial Csp of ca. 1264 mAh/g, cycling stability (Csp and Coulombic efficiency are 811 mAh/g and 98.09 % after 120 cycles) at 0.1 C by forming a good protective layer on the Li-metal surface and preventing polysulfide dissolution.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信