Gunnar Behrens, Tom Beucler, Fernando Iglesias-Suarez, Sungduk Yu, Pierre Gentine, Michael Pritchard, Mierk Schwabe, Veronika Eyring
{"title":"Simulating Atmospheric Processes in Earth System Models and Quantifying Uncertainties With Deep Learning Multi-Member and Stochastic Parameterizations","authors":"Gunnar Behrens, Tom Beucler, Fernando Iglesias-Suarez, Sungduk Yu, Pierre Gentine, Michael Pritchard, Mierk Schwabe, Veronika Eyring","doi":"10.1029/2024MS004272","DOIUrl":null,"url":null,"abstract":"<p>Deep learning is a powerful tool to represent subgrid processes in climate models, but many application cases have so far used idealized settings and deterministic approaches. Here, we develop stochastic parameterizations with calibrated uncertainty quantification to learn subgrid convective and turbulent processes and surface radiative fluxes of a superparameterization embedded in an Earth System Model (ESM). We explore three methods to construct stochastic parameterizations: (a) a single Deep Neural Network (DNN) with Monte Carlo Dropout; (b) a multi-member parameterization; and (c) a Variational Encoder Decoder with latent space perturbation. We show that the multi-member parameterization improves the representation of convective processes, especially in the planetary boundary layer, compared to individual DNNs. The respective uncertainty quantification illustrates that methods (b) and (c) are advantageous compared to a dropout-based DNN parameterization regarding the spread of convective processes. Hybrid simulations with our best-performing multi-member parameterizations remained challenging and crash within the first days. Therefore, we develop a pragmatic partial coupling strategy relying on the superparameterization for condensate emulation. Partial coupling reduces the computational efficiency of hybrid Earth-like simulations but enables model stability over 5 months with our multi-member parameterizations. However, our hybrid simulations exhibit biases in thermodynamic fields and differences in precipitation patterns. Despite this, the multi-member parameterizations enable improvements in reproducing tropical extreme precipitation compared to a traditional convection parameterization. Despite these challenges, our results indicate the potential of a new generation of multi-member machine learning parameterizations leveraging uncertainty quantification to improve the representation of stochasticity of subgrid effects.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004272","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004272","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning is a powerful tool to represent subgrid processes in climate models, but many application cases have so far used idealized settings and deterministic approaches. Here, we develop stochastic parameterizations with calibrated uncertainty quantification to learn subgrid convective and turbulent processes and surface radiative fluxes of a superparameterization embedded in an Earth System Model (ESM). We explore three methods to construct stochastic parameterizations: (a) a single Deep Neural Network (DNN) with Monte Carlo Dropout; (b) a multi-member parameterization; and (c) a Variational Encoder Decoder with latent space perturbation. We show that the multi-member parameterization improves the representation of convective processes, especially in the planetary boundary layer, compared to individual DNNs. The respective uncertainty quantification illustrates that methods (b) and (c) are advantageous compared to a dropout-based DNN parameterization regarding the spread of convective processes. Hybrid simulations with our best-performing multi-member parameterizations remained challenging and crash within the first days. Therefore, we develop a pragmatic partial coupling strategy relying on the superparameterization for condensate emulation. Partial coupling reduces the computational efficiency of hybrid Earth-like simulations but enables model stability over 5 months with our multi-member parameterizations. However, our hybrid simulations exhibit biases in thermodynamic fields and differences in precipitation patterns. Despite this, the multi-member parameterizations enable improvements in reproducing tropical extreme precipitation compared to a traditional convection parameterization. Despite these challenges, our results indicate the potential of a new generation of multi-member machine learning parameterizations leveraging uncertainty quantification to improve the representation of stochasticity of subgrid effects.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.