New insights into genome assembly at the chromosome-level of Prunus tomentosa in evolution and cold tolerance

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2025-03-20 DOI:10.1002/imt2.70016
Songtao Jiu, Muhammad Aamir Manzoor, Zhengxin Lv, Baozheng Chen, Shaoqin Shen, Yan Xu, Moyang Liu, Chengwei Li, Xunju Liu, Yanhong Fu, Qijing Zhang, Ruie Liu, Xinyu Zhang, Shiping Wang, Xiaoming Song, Yang Dong, Caixi Zhang
{"title":"New insights into genome assembly at the chromosome-level of Prunus tomentosa in evolution and cold tolerance","authors":"Songtao Jiu,&nbsp;Muhammad Aamir Manzoor,&nbsp;Zhengxin Lv,&nbsp;Baozheng Chen,&nbsp;Shaoqin Shen,&nbsp;Yan Xu,&nbsp;Moyang Liu,&nbsp;Chengwei Li,&nbsp;Xunju Liu,&nbsp;Yanhong Fu,&nbsp;Qijing Zhang,&nbsp;Ruie Liu,&nbsp;Xinyu Zhang,&nbsp;Shiping Wang,&nbsp;Xiaoming Song,&nbsp;Yang Dong,&nbsp;Caixi Zhang","doi":"10.1002/imt2.70016","DOIUrl":null,"url":null,"abstract":"<p>This study assembled a high-quality chromosome-level genome of <i>Prunus tomentosa</i>, offering a vital resource for elucidating its genetic architecture, evolutionary relationships, and facilitating genome-assisted breeding efforts. Multi-omics integration revealed <i>PtIMP3</i> and <i>PtMIOX1L</i> as key factors in cold tolerance of <i>P. tomentosa</i>. <i>PtIMP3</i> drives the conversion of glucose-6-phosphate to <i>myo</i>-inositol, while <i>PtMIOX1L</i> catalyzes <i>myo</i>-inositol to <span>d</span>-glucuronic acid. Specifically, the high expression abundance of <i>PtIMP3</i> and low expression abundance of <i>PtMIOX1L</i> resulted in high endogenous inositol levels in <i>P. tomentosa</i>. The application of <i>myo</i>-inositol enhanced the cold tolerance of cherry rootstocks by modulating reactive oxygen species concentrations and maintaining a stable relative water content. This finding supports the superior performance of <i>P. tomentosa</i> in adapting to extreme low-temperatures environmental conditions. These insights advance strategies for improving cold tolerance in horticultural crops, bridging fundamental research with practical applications in developing climate-resilient crops.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"4 2","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.70016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study assembled a high-quality chromosome-level genome of Prunus tomentosa, offering a vital resource for elucidating its genetic architecture, evolutionary relationships, and facilitating genome-assisted breeding efforts. Multi-omics integration revealed PtIMP3 and PtMIOX1L as key factors in cold tolerance of P. tomentosa. PtIMP3 drives the conversion of glucose-6-phosphate to myo-inositol, while PtMIOX1L catalyzes myo-inositol to d-glucuronic acid. Specifically, the high expression abundance of PtIMP3 and low expression abundance of PtMIOX1L resulted in high endogenous inositol levels in P. tomentosa. The application of myo-inositol enhanced the cold tolerance of cherry rootstocks by modulating reactive oxygen species concentrations and maintaining a stable relative water content. This finding supports the superior performance of P. tomentosa in adapting to extreme low-temperatures environmental conditions. These insights advance strategies for improving cold tolerance in horticultural crops, bridging fundamental research with practical applications in developing climate-resilient crops.

Abstract Image

毛李染色体水平基因组组装在进化和耐寒性中的新见解
这项研究组建了一个高质量的番杏染色体级基因组,为阐明番杏的遗传结构、进化关系以及促进基因组辅助育种工作提供了重要资源。多组学整合发现PtIMP3和PtMIOX1L是番杏耐寒的关键因子。PtIMP3 驱动葡萄糖-6-磷酸转化为肌醇,而 PtMIOX1L 催化肌醇转化为 d-葡萄糖醛酸。具体来说,PtIMP3 的高表达丰度和 PtMIOX1L 的低表达丰度导致了 P. tomentosa 的内源性肌醇水平较高。肌醇的应用通过调节活性氧浓度和保持稳定的相对含水量,增强了樱桃砧木的耐寒性。这一发现支持了番樱桃在适应极端低温环境条件方面的卓越表现。这些见解推进了提高园艺作物耐寒性的战略,在基础研究与开发气候适应性作物的实际应用之间架起了一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信