Influence of Joule Heating and Nonlinear Thermal Radiation on the Electrical Conductivity of Second-Grade Hybrid Nanofluid Flow Over a Stretching Cylinder

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Eshetu Haile Gorfie, Asfaw Tsegaye Moltot, Gurju Awgichew Zergaw, Hunegnaw Dessie
{"title":"Influence of Joule Heating and Nonlinear Thermal Radiation on the Electrical Conductivity of Second-Grade Hybrid Nanofluid Flow Over a Stretching Cylinder","authors":"Eshetu Haile Gorfie,&nbsp;Asfaw Tsegaye Moltot,&nbsp;Gurju Awgichew Zergaw,&nbsp;Hunegnaw Dessie","doi":"10.1002/eng2.70129","DOIUrl":null,"url":null,"abstract":"<p>This study examines the heat and mass transfer rates of an electrically conducting second-grade hybrid nanofluid over a stretching cylinder, focusing on the effects of Joule heating, nonuniform heat sources, and nonlinear thermal radiation. The hybrid nanofluid, composed of silver nanoparticles and aluminum oxide in ethylene glycol, enhances thermal conductivity and heat transfer efficiency in second-grade fluid flows, making it suitable for applications in heat exchangers, aerospace, renewable energy, and electronic cooling systems. The novelty of the research lies in the comparative analysis of flow characteristics, heat and mass transfer rates, and the influence of key phenomena such as nonlinear thermal radiation, Joule heating, nonuniform heat sources, chemical reactions, Soret number, thermophoresis, and Brownian motion on velocity and temperature profiles in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Al</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mi>O</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{Al}}_2{\\mathrm{O}}_3 $$</annotation>\n </semantics></math>-ethylene glycol and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Ag-Al</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mi>O</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ \\mathrm{Ag}\\hbox{-} {\\mathrm{Al}}_2{\\mathrm{O}}_3 $$</annotation>\n </semantics></math>-ethylene glycol hybrid nanofluids. Using a similarity transformation, the governing partial differential equations are reduced to ordinary differential equations and solved numerically using MATLAB's bvp4c package. Results are validated against existing data, showing good agreement. Graphical representations of the influence of various physical parameters on velocity, temperature, and concentration profiles are presented, along with their effects on the skin friction coefficient, local Nusselt number, and Sherwood number. The findings show that curvature effects increase the boundary layer thickness for momentum, temperature, and concentration. Enhanced nonlinear thermal radiation improves heat transfer, particularly in high-temperature conditions. Increased internal heat sources elevate fluid temperature, and higher nanoparticle concentrations improve heat transfer, resulting in a higher local Nusselt number. In conclusion, hybrid nanofluids in ethylene glycol outperform mono-nanofluids in heat transfer efficiency, offering better performance for engineering applications. The findings apply to thermal management, electronic cooling, energy storage, manufacturing, biomedical treatments, and heat transfer optimization in power generation and aerospace engineering.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70129","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the heat and mass transfer rates of an electrically conducting second-grade hybrid nanofluid over a stretching cylinder, focusing on the effects of Joule heating, nonuniform heat sources, and nonlinear thermal radiation. The hybrid nanofluid, composed of silver nanoparticles and aluminum oxide in ethylene glycol, enhances thermal conductivity and heat transfer efficiency in second-grade fluid flows, making it suitable for applications in heat exchangers, aerospace, renewable energy, and electronic cooling systems. The novelty of the research lies in the comparative analysis of flow characteristics, heat and mass transfer rates, and the influence of key phenomena such as nonlinear thermal radiation, Joule heating, nonuniform heat sources, chemical reactions, Soret number, thermophoresis, and Brownian motion on velocity and temperature profiles in Al 2 O 3 $$ {\mathrm{Al}}_2{\mathrm{O}}_3 $$ -ethylene glycol and Ag-Al 2 O 3 $$ \mathrm{Ag}\hbox{-} {\mathrm{Al}}_2{\mathrm{O}}_3 $$ -ethylene glycol hybrid nanofluids. Using a similarity transformation, the governing partial differential equations are reduced to ordinary differential equations and solved numerically using MATLAB's bvp4c package. Results are validated against existing data, showing good agreement. Graphical representations of the influence of various physical parameters on velocity, temperature, and concentration profiles are presented, along with their effects on the skin friction coefficient, local Nusselt number, and Sherwood number. The findings show that curvature effects increase the boundary layer thickness for momentum, temperature, and concentration. Enhanced nonlinear thermal radiation improves heat transfer, particularly in high-temperature conditions. Increased internal heat sources elevate fluid temperature, and higher nanoparticle concentrations improve heat transfer, resulting in a higher local Nusselt number. In conclusion, hybrid nanofluids in ethylene glycol outperform mono-nanofluids in heat transfer efficiency, offering better performance for engineering applications. The findings apply to thermal management, electronic cooling, energy storage, manufacturing, biomedical treatments, and heat transfer optimization in power generation and aerospace engineering.

Abstract Image

本研究探讨了导电二级混合纳米流体在拉伸圆柱体上的传热和传质速率,重点关注焦耳加热、非均匀热源和非线性热辐射的影响。该混合纳米流体由银纳米粒子和氧化铝在乙二醇中组成,可增强二级流体流动中的热导率和传热效率,因此适合应用于热交换器、航空航天、可再生能源和电子冷却系统。该研究的新颖之处在于比较分析了 Al 2 O 3 $$ {\mathrm{Al}}_2{mathrm{O}}_3 $$ - 乙二醇和 Ag-Al 2 O 3 $$ \mathrm{Ag}\hbox{-} 中的流动特性、传热和传质速率以及非线性热辐射、焦耳加热、非均匀热源、化学反应、索雷特数、热泳和布朗运动等关键现象对速度和温度曲线的影响。{\mathrm{Al}}_2{m\mathrm{O}}_3 $$ - 乙二醇混合纳米流体。通过相似性转换,将支配偏微分方程还原为常微分方程,并使用 MATLAB 的 bvp4c 软件包进行数值求解。结果与现有数据进行了验证,显示出良好的一致性。图表显示了各种物理参数对速度、温度和浓度剖面的影响,以及它们对表皮摩擦系数、局部努塞尔特数和舍伍德数的影响。研究结果表明,曲率效应增加了动量、温度和浓度的边界层厚度。增强的非线性热辐射改善了传热,尤其是在高温条件下。内部热源的增加使流体温度升高,纳米粒子浓度越高,传热效果越好,从而使局部努塞尔特数升高。总之,乙二醇中的混合纳米流体在传热效率方面优于单纳米流体,为工程应用提供了更好的性能。研究结果适用于热管理、电子冷却、能量存储、制造、生物医学治疗以及发电和航空航天工程中的传热优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信