The evolution of research at the intersection of industrial ecology and artificial intelligence

IF 4.9 3区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Yongyue Gong, Fengmei Ma, Heming Wang, Asaf Tzachor, Wenju Sun, Junming Zhu, Gang Liu, Heinz Schandl
{"title":"The evolution of research at the intersection of industrial ecology and artificial intelligence","authors":"Yongyue Gong,&nbsp;Fengmei Ma,&nbsp;Heming Wang,&nbsp;Asaf Tzachor,&nbsp;Wenju Sun,&nbsp;Junming Zhu,&nbsp;Gang Liu,&nbsp;Heinz Schandl","doi":"10.1111/jiec.13612","DOIUrl":null,"url":null,"abstract":"<p>The intersection of artificial intelligence (AI) and industrial ecology (IE) is gaining significant attention due to AI's potential to enhance the sustainability of production and consumption systems. Understanding the current state of research in this field can highlight covered topics, identify trends, and reveal understudied topics warranting future research. However, few studies have systematically reviewed this intersection. In this study, we analyze 1068 publications within the IE–AI domain using trend factor analysis, word2vec modeling, and top2vec modeling. These methods uncover patterns of topic interconnections and evolutionary trends. Our results identify 71 trending terms within the selected publications, 69 of which, such as “deep learning,” have emerged in the past 8 years. The word2vec analysis shows that the application of various AI techniques is increasingly integrated into life cycle assessment and the circular economy. The top2vec analysis suggests that employing AI to predict and optimize indicators related to products, waste, processes, and their environmental impacts is an emerging trend. Lastly, we propose that fine-tuning large language models to better understand and process data specific to IE, along with deploying real-time data collection technologies such as sensors, computer vision, and robotics, could effectively address the challenges of data-driven decision-making in this domain.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"29 2","pages":"440-457"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.13612","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The intersection of artificial intelligence (AI) and industrial ecology (IE) is gaining significant attention due to AI's potential to enhance the sustainability of production and consumption systems. Understanding the current state of research in this field can highlight covered topics, identify trends, and reveal understudied topics warranting future research. However, few studies have systematically reviewed this intersection. In this study, we analyze 1068 publications within the IE–AI domain using trend factor analysis, word2vec modeling, and top2vec modeling. These methods uncover patterns of topic interconnections and evolutionary trends. Our results identify 71 trending terms within the selected publications, 69 of which, such as “deep learning,” have emerged in the past 8 years. The word2vec analysis shows that the application of various AI techniques is increasingly integrated into life cycle assessment and the circular economy. The top2vec analysis suggests that employing AI to predict and optimize indicators related to products, waste, processes, and their environmental impacts is an emerging trend. Lastly, we propose that fine-tuning large language models to better understand and process data specific to IE, along with deploying real-time data collection technologies such as sensors, computer vision, and robotics, could effectively address the challenges of data-driven decision-making in this domain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Industrial Ecology
Journal of Industrial Ecology 环境科学-环境科学
CiteScore
11.60
自引率
8.50%
发文量
117
审稿时长
12-24 weeks
期刊介绍: The Journal of Industrial Ecology addresses a series of related topics: material and energy flows studies (''industrial metabolism'') technological change dematerialization and decarbonization life cycle planning, design and assessment design for the environment extended producer responsibility (''product stewardship'') eco-industrial parks (''industrial symbiosis'') product-oriented environmental policy eco-efficiency Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信