Exploring the potential of essential oils against airborne fungi from cultural heritage conservation premises

IF 2.1 3区 生物学 Q2 MULTIDISCIPLINARY SCIENCES
Željko Savković, Ana Džamić, Jovana Veselinović, Milica Ljaljević Grbić, Miloš Stupar
{"title":"Exploring the potential of essential oils against airborne fungi from cultural heritage conservation premises","authors":"Željko Savković,&nbsp;Ana Džamić,&nbsp;Jovana Veselinović,&nbsp;Milica Ljaljević Grbić,&nbsp;Miloš Stupar","doi":"10.1007/s00114-025-01983-3","DOIUrl":null,"url":null,"abstract":"<div><p>The activity of six essential oils was investigated against eight fungal isolates (four <i>Aspergillus</i> and four <i>Penicillium</i> species) isolated from cultural heritage conservation premises in Serbia. To analyze the chemical composition of essential oils (EOs), gas chromatography coupled with mass spectrometry was employed. The antifungal activity of selected EOs was investigated using microdilution and microatmosphere methods while the commercial biocide benzalkonium chloride (BAC) was used as a control. Furthermore, molecular docking was used as an efficacious in silico method for the determination of interaction between dominant EO compounds and enzyme CYP51, essential for fungal ergosterol synthesis. It was demonstrated that BAC, <i>Cinnamomum zeylanicum</i>, and <i>Gaultheria procumbens</i> EOs had the strongest antifungal activity, which is in concordance with the results of molecular docking. Namely, the highest energy of enzyme–cofactor interaction was obtained for eugenol (the dominant component of <i>Syzygium aromaticum</i> and <i>C. zeylanicum</i> EOs). Moreover, it was found that the most resistant fungal isolates were <i>A. flavus</i> and <i>A. niger</i>, while <i>A. sydowii</i> and <i>P. citrinum</i> were the most susceptible. The results of our study point to the possibility of using studied environmentally friendly biocides of biological origin for the preservation of historical monuments and artifacts.</p></div>","PeriodicalId":794,"journal":{"name":"The Science of Nature","volume":"112 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Science of Nature","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s00114-025-01983-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The activity of six essential oils was investigated against eight fungal isolates (four Aspergillus and four Penicillium species) isolated from cultural heritage conservation premises in Serbia. To analyze the chemical composition of essential oils (EOs), gas chromatography coupled with mass spectrometry was employed. The antifungal activity of selected EOs was investigated using microdilution and microatmosphere methods while the commercial biocide benzalkonium chloride (BAC) was used as a control. Furthermore, molecular docking was used as an efficacious in silico method for the determination of interaction between dominant EO compounds and enzyme CYP51, essential for fungal ergosterol synthesis. It was demonstrated that BAC, Cinnamomum zeylanicum, and Gaultheria procumbens EOs had the strongest antifungal activity, which is in concordance with the results of molecular docking. Namely, the highest energy of enzyme–cofactor interaction was obtained for eugenol (the dominant component of Syzygium aromaticum and C. zeylanicum EOs). Moreover, it was found that the most resistant fungal isolates were A. flavus and A. niger, while A. sydowii and P. citrinum were the most susceptible. The results of our study point to the possibility of using studied environmentally friendly biocides of biological origin for the preservation of historical monuments and artifacts.

探索精油对文物保护场所空气传播真菌的潜在作用
研究了6种精油对从塞尔维亚文化遗产保护场所分离的8种真菌(4种曲霉和4种青霉)的活性。采用气相色谱-质谱联用技术分析精油的化学成分。采用微稀释法和微气氛法研究了所选EOs的抑菌活性,并以市售杀菌剂苯扎氯铵(benzalkonium chloride, BAC)为对照。此外,分子对接被用作一种有效的计算机模拟方法,用于测定优势EO化合物与真菌麦角甾醇合成所必需的CYP51酶之间的相互作用。结果表明,BAC、Cinnamomum zeylanicum和Gaultheria procumbens的抗真菌活性最强,这与分子对接的结果一致。也就是说,丁香酚(香薷和泽兰的主要成分)的酶-辅因子相互作用能量最高。结果表明,抗药最强的真菌是黄霉和黑霉,最敏感的是黄霉和黄霉。我们的研究结果指出了使用生物来源的环保型杀菌剂来保护历史遗迹和文物的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Science of Nature
The Science of Nature 综合性期刊-综合性期刊
CiteScore
3.40
自引率
0.00%
发文量
47
审稿时长
4-8 weeks
期刊介绍: The Science of Nature - Naturwissenschaften - is Springer''s flagship multidisciplinary science journal. The journal is dedicated to the fast publication and global dissemination of high-quality research and invites papers, which are of interest to the broader community in the biological sciences. Contributions from the chemical, geological, and physical sciences are welcome if contributing to questions of general biological significance. Particularly welcomed are contributions that bridge between traditionally isolated areas and attempt to increase the conceptual understanding of systems and processes that demand an interdisciplinary approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信