Asymptotic blow-up behavior for the semilinear heat equation with non scale invariant nonlinearity

IF 2.4 2区 数学 Q1 MATHEMATICS
Loth Damagui Chabi
{"title":"Asymptotic blow-up behavior for the semilinear heat equation with non scale invariant nonlinearity","authors":"Loth Damagui Chabi","doi":"10.1016/j.jde.2025.113303","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize the asymptotic behavior near blowup points for positive solutions of the semilinear heat equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo></math></span></span></span> for nonlinearities which are genuinely non scale invariant, unlike in the standard case <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. Indeed, our results apply to a large class of nonlinearities of the form <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mi>L</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span>, where <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span> is Sobolev subcritical and <em>L</em> is a slowly varying function at infinity (which includes for instance logarithms and their powers and iterates, as well as some strongly oscillating functions).</div><div>More precisely, denoting by <em>ψ</em> the unique positive solution of the corresponding ODE <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> which blows up at the same time <em>T</em>, we show that if <span><math><mi>a</mi><mo>∈</mo><mi>Ω</mi></math></span> is a blowup point of <em>u</em>, then<span><span><span><math><munder><mi>lim</mi><mrow><mi>t</mi><mo>→</mo><mi>T</mi></mrow></munder><mo>⁡</mo><mfrac><mrow><mi>u</mi><mo>(</mo><mi>a</mi><mo>+</mo><mi>y</mi><msqrt><mrow><mi>T</mi><mo>−</mo><mi>t</mi></mrow></msqrt><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>ψ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mn>1</mn><mo>,</mo><mspace></mspace><mrow><mtext>uniformly for </mtext><mi>y</mi><mtext> bounded.</mtext></mrow></math></span></span></span> Additional blow-up properties are obtained, including the compactness of the blow-up set for the Cauchy problem with decaying initial data.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"435 ","pages":"Article 113303"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003304","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize the asymptotic behavior near blowup points for positive solutions of the semilinear heat equationtuΔu=f(u), for nonlinearities which are genuinely non scale invariant, unlike in the standard case f(u)=up. Indeed, our results apply to a large class of nonlinearities of the form f(u)=upL(u), where p>1 is Sobolev subcritical and L is a slowly varying function at infinity (which includes for instance logarithms and their powers and iterates, as well as some strongly oscillating functions).
More precisely, denoting by ψ the unique positive solution of the corresponding ODE y(t)=f(y(t)) which blows up at the same time T, we show that if aΩ is a blowup point of u, thenlimtTu(a+yTt,t)ψ(t)=1,uniformly for y bounded. Additional blow-up properties are obtained, including the compactness of the blow-up set for the Cauchy problem with decaying initial data.
具有非尺度不变非线性的半线性热方程的渐近炸毁行为
我们描述了半线性热方程∂tu−Δu=f(u)的正解在爆破点附近的渐近行为,对于真正非尺度不变的非线性,不同于标准情况f(u)=up。事实上,我们的结果适用于形式为f(u)=upL(u)的一大类非线性,其中p>;1是Sobolev次临界函数,L是无穷远处的缓慢变化函数(例如,它包括对数及其幂和迭代,以及一些强振荡函数)。更准确地说,用ψ表示对应的ODE y ' (t)=f(y(t))在同时t爆炸的唯一正解,我们证明如果a∈Ω是u的一个爆炸点,那么极限→t∈u(a+yT−t,t)ψ(t)=1,对于y有界是一致的。得到了初始数据衰减的柯西问题的爆破集的紧性等附加爆破性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信