Bincan Deng , Sibai Chen , Fernando López Lasaosa , Xuan Xue , Chen Xuan , Hongli Mao , Yuwen Cui , Zhongwei Gu , Manuel Doblare
{"title":"Predicting rheological properties of HAMA/GelMA hybrid hydrogels via machine learning","authors":"Bincan Deng , Sibai Chen , Fernando López Lasaosa , Xuan Xue , Chen Xuan , Hongli Mao , Yuwen Cui , Zhongwei Gu , Manuel Doblare","doi":"10.1016/j.jmbbm.2025.107005","DOIUrl":null,"url":null,"abstract":"<div><div>- Rheological properties are pivotal in determining the printability of biomaterials, directly impacting the success of 3D bioprinted constructs. Understanding the intricate relationship between biomaterial formulations, rheological behavior and printability can facilitate the advancement and rapid development of biomaterials. Herein, we critically measured the rheological properties of hyaluronic acid methacrylate (HAMA)/gelatin methacrylate (GelMA) hybrid hydrogels with varied formulations and generated a dataset to train a machine learning (ML) model. By utilizing four well-known algorithms, we developed the ML model for the viscosity and shear stress of HAMA/GelMA hydrogel mixtures. To improve model interpretability, we further created a multilayer perceptron framed model, known as HydroThermoMLP, by incorporating the Redlich-Kister polynomial as the thermodynamic representation of viscosity of mixtures. To accomplish the MLP learning on limited data, the shared loss function was formulated on the basis of the R-K presentation to guide the joint training process. The established HydroThermoMLP model, while maintaining the same accuracy as Random Forest, produces outputs that adhere to thermodynamic constraints and instill confidence in generalization applications with a simple algorithm informed by the R-K polynomial. It presents a robust predictive ML tool to forecast the viscosity of hybrid hydrogels and direct the design of biomaterials while appropriately abiding by thermodynamic constraints as essential guidelines.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"168 ","pages":"Article 107005"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125001213","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
- Rheological properties are pivotal in determining the printability of biomaterials, directly impacting the success of 3D bioprinted constructs. Understanding the intricate relationship between biomaterial formulations, rheological behavior and printability can facilitate the advancement and rapid development of biomaterials. Herein, we critically measured the rheological properties of hyaluronic acid methacrylate (HAMA)/gelatin methacrylate (GelMA) hybrid hydrogels with varied formulations and generated a dataset to train a machine learning (ML) model. By utilizing four well-known algorithms, we developed the ML model for the viscosity and shear stress of HAMA/GelMA hydrogel mixtures. To improve model interpretability, we further created a multilayer perceptron framed model, known as HydroThermoMLP, by incorporating the Redlich-Kister polynomial as the thermodynamic representation of viscosity of mixtures. To accomplish the MLP learning on limited data, the shared loss function was formulated on the basis of the R-K presentation to guide the joint training process. The established HydroThermoMLP model, while maintaining the same accuracy as Random Forest, produces outputs that adhere to thermodynamic constraints and instill confidence in generalization applications with a simple algorithm informed by the R-K polynomial. It presents a robust predictive ML tool to forecast the viscosity of hybrid hydrogels and direct the design of biomaterials while appropriately abiding by thermodynamic constraints as essential guidelines.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.