Shicheng Xie , Xuexiang Yu , Jiajia Yuan , Xu Yang , Mingfei Zhu , Yuchen Han , Min Wei , Zhongchen Guo
{"title":"TransXLT: A novel ZTD prediction method with SASR-based data reconstruction","authors":"Shicheng Xie , Xuexiang Yu , Jiajia Yuan , Xu Yang , Mingfei Zhu , Yuchen Han , Min Wei , Zhongchen Guo","doi":"10.1016/j.isci.2025.112328","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional Zenith Tropospheric Delay (ZTD) models often face difficulties in maintaining prediction accuracy under complex meteorological conditions and data loss. To address this, we propose the transformer-xLSTM (TransXLT) model, which integrates spatial-temporal information from global navigation satellite system (GNSS) stations, ERA5 (global atmospheric reanalysis), and GPT3 (empirical ZTD estimation). Missing data are reconstructed using a sparse attention-based time series reconstruction (SASR) method. Experimental results show: (1) under a 120-h data loss, SASR reduces mean absolute error (MAE) by 24.5% compared to cubic Hermite interpolation; (2) SASR lowers training root mean square error (RMSE) by 15.1% versus direct data deletion; and (3) TransXLT achieves an average RMSE of 8.13 mm across six sites, reducing RMSE by up to 76.54% compared to benchmarks like CNN-LSTM and ERA5. Demonstrating robustness across varying latitudes, altitudes, and seasons, the model significantly advances ZTD estimation accuracy for GNSS applications.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 5","pages":"Article 112328"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225005899","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional Zenith Tropospheric Delay (ZTD) models often face difficulties in maintaining prediction accuracy under complex meteorological conditions and data loss. To address this, we propose the transformer-xLSTM (TransXLT) model, which integrates spatial-temporal information from global navigation satellite system (GNSS) stations, ERA5 (global atmospheric reanalysis), and GPT3 (empirical ZTD estimation). Missing data are reconstructed using a sparse attention-based time series reconstruction (SASR) method. Experimental results show: (1) under a 120-h data loss, SASR reduces mean absolute error (MAE) by 24.5% compared to cubic Hermite interpolation; (2) SASR lowers training root mean square error (RMSE) by 15.1% versus direct data deletion; and (3) TransXLT achieves an average RMSE of 8.13 mm across six sites, reducing RMSE by up to 76.54% compared to benchmarks like CNN-LSTM and ERA5. Demonstrating robustness across varying latitudes, altitudes, and seasons, the model significantly advances ZTD estimation accuracy for GNSS applications.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.