{"title":"A family of self-orthogonal divisible codes with locality 2","authors":"Ziling Heng , Mengjie Yang , Yang Ming","doi":"10.1016/j.disc.2025.114529","DOIUrl":null,"url":null,"abstract":"<div><div>Linear codes are widely studied due to their applications in communication, cryptography, quantum codes, distributed storage and many other fields. In this paper, we use the trace and norm functions over finite fields to construct a family of linear codes. The weight distributions of the codes are determined in three cases via Gaussian sums. The codes are shown to be self-orthogonal divisible codes with only three, four or five nonzero weights in these cases. In particular, we prove that this family of linear codes has locality 2. Several optimal or almost optimal linear codes and locally recoverable codes are derived. In particular, an infinite family of distance-optimal binary linear codes with respect to the sphere-packing bound is obtained. The self-orthogonal codes derived in this paper can be used to construct lattices and have nice application in distributed storage.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114529"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001372","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Linear codes are widely studied due to their applications in communication, cryptography, quantum codes, distributed storage and many other fields. In this paper, we use the trace and norm functions over finite fields to construct a family of linear codes. The weight distributions of the codes are determined in three cases via Gaussian sums. The codes are shown to be self-orthogonal divisible codes with only three, four or five nonzero weights in these cases. In particular, we prove that this family of linear codes has locality 2. Several optimal or almost optimal linear codes and locally recoverable codes are derived. In particular, an infinite family of distance-optimal binary linear codes with respect to the sphere-packing bound is obtained. The self-orthogonal codes derived in this paper can be used to construct lattices and have nice application in distributed storage.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.