Lian Duan , Shuyuan Jia , Xuran Li , Yalong Wang , Yiming Zhang , Shuang Fu , Yang Wang , Can Ye , Pengfei Liu , Zongbo Shi , Yujing Mu
{"title":"Recent advancements in observations, sources, and environmental effects of atmospheric hydrogen peroxide (H2O2)","authors":"Lian Duan , Shuyuan Jia , Xuran Li , Yalong Wang , Yiming Zhang , Shuang Fu , Yang Wang , Can Ye , Pengfei Liu , Zongbo Shi , Yujing Mu","doi":"10.1016/j.atmosenv.2025.121230","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is an important oxidant in the troposphere that impacts atmospheric oxidation capacity and plays key roles in S(IV) oxidation. In the past decade, researchers have proposed new H<sub>2</sub>O<sub>2</sub> formation mechanisms as well as its significant environmental effects, based on field measurements, laboratory experiments, and modeling. However, these unconventional chemical processes related to atmospheric H<sub>2</sub>O<sub>2</sub> have not been systematically reviewed, previous reviews on atmospheric H<sub>2</sub>O<sub>2</sub> were published in the early 2000s. Herein, we review the recent atmospheric H<sub>2</sub>O<sub>2</sub> studies throughout the world, mainly focusing on the observations, sources, and environmental effects of atmospheric H<sub>2</sub>O<sub>2</sub>. First, we summarize the temporal and vertical distributions of atmospheric H<sub>2</sub>O<sub>2</sub> across urban, rural, mountainous, forested, and oceanic regions, as well as the upper atmosphere. Next, we discuss recent advancements in understanding potential sources of atmospheric H<sub>2</sub>O<sub>2</sub> and its multiphase formation mechanisms. Finally, the increasing environmental effects of atmospheric H<sub>2</sub>O<sub>2</sub>, including its role in diagnosis of O<sub>3</sub>-NO<sub>x</sub>-VOCs sensitivity and significance in sulfate formation, are outlined. This review will help gain a comprehensive understanding of atmospheric H<sub>2</sub>O<sub>2</sub> evolution and call for more future studies on atmospheric H<sub>2</sub>O<sub>2</sub> to better deal with the current complex air pollution challenges.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"352 ","pages":"Article 121230"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231025002055","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric hydrogen peroxide (H2O2) is an important oxidant in the troposphere that impacts atmospheric oxidation capacity and plays key roles in S(IV) oxidation. In the past decade, researchers have proposed new H2O2 formation mechanisms as well as its significant environmental effects, based on field measurements, laboratory experiments, and modeling. However, these unconventional chemical processes related to atmospheric H2O2 have not been systematically reviewed, previous reviews on atmospheric H2O2 were published in the early 2000s. Herein, we review the recent atmospheric H2O2 studies throughout the world, mainly focusing on the observations, sources, and environmental effects of atmospheric H2O2. First, we summarize the temporal and vertical distributions of atmospheric H2O2 across urban, rural, mountainous, forested, and oceanic regions, as well as the upper atmosphere. Next, we discuss recent advancements in understanding potential sources of atmospheric H2O2 and its multiphase formation mechanisms. Finally, the increasing environmental effects of atmospheric H2O2, including its role in diagnosis of O3-NOx-VOCs sensitivity and significance in sulfate formation, are outlined. This review will help gain a comprehensive understanding of atmospheric H2O2 evolution and call for more future studies on atmospheric H2O2 to better deal with the current complex air pollution challenges.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.