Cheng Yang , Fang Yin , Hao Wang , Xianbin Li , Penghao Su , Daolun Feng
{"title":"Source characteristics and gas-particle partitioning of alkylated polycyclic aromatic hydrocarbons in coal combustion emissions","authors":"Cheng Yang , Fang Yin , Hao Wang , Xianbin Li , Penghao Su , Daolun Feng","doi":"10.1016/j.atmosenv.2025.121231","DOIUrl":null,"url":null,"abstract":"<div><div>Investigations into the characteristics and phase-partitioning behavior of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) during coal combustion process remain notably limited. This study aims to analyze the source characteristics, distribution patterns, and partitioning mechanisms of parent and alkyl-PAHs in gas and particle phase emissions from coal combustion. The results show that 30.77 %–49.37 % of parent PAHs from coking, gas, lean and fat coal combustion emissions are distributed in gas phases, while it accounts for 78.59 % in lignite coal combustion emission. In terms of alkyl-PAHs, 79.05 %–89.45 % of coking, gas and lean coal combustion emissions are presented in particle phases, and 62.66 %–69.32 % of lignite and fat coal combustion emissions are presented in gas phases. Moreover, the PAH <em>p</em>-values from coal combustion emissions are in the range of −1.00 to −0.68, and the alkylated ones range from −0.80 to −0.54. Interestingly, alkylated phenanthrenes maintain a high degree of uniformity in the distribution patterns of combustion emissions, and their bell-shape distribution pattern performs to be a potential indicator of coal combustion. Furthermore, by employing partitioning models, it can be proven that absorption and adsorption are governing PAH partitioning mechanisms, and alkyl-PAHs can reach equilibrium more rapidly than parent PAHs. These findings offer detailed data into source analysis and the fate of alkyl-PAHs from coal combustion, which is expected to be helpful for environmental behavior investigation and better pollution control of coal combustion.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"352 ","pages":"Article 121231"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231025002067","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Investigations into the characteristics and phase-partitioning behavior of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) during coal combustion process remain notably limited. This study aims to analyze the source characteristics, distribution patterns, and partitioning mechanisms of parent and alkyl-PAHs in gas and particle phase emissions from coal combustion. The results show that 30.77 %–49.37 % of parent PAHs from coking, gas, lean and fat coal combustion emissions are distributed in gas phases, while it accounts for 78.59 % in lignite coal combustion emission. In terms of alkyl-PAHs, 79.05 %–89.45 % of coking, gas and lean coal combustion emissions are presented in particle phases, and 62.66 %–69.32 % of lignite and fat coal combustion emissions are presented in gas phases. Moreover, the PAH p-values from coal combustion emissions are in the range of −1.00 to −0.68, and the alkylated ones range from −0.80 to −0.54. Interestingly, alkylated phenanthrenes maintain a high degree of uniformity in the distribution patterns of combustion emissions, and their bell-shape distribution pattern performs to be a potential indicator of coal combustion. Furthermore, by employing partitioning models, it can be proven that absorption and adsorption are governing PAH partitioning mechanisms, and alkyl-PAHs can reach equilibrium more rapidly than parent PAHs. These findings offer detailed data into source analysis and the fate of alkyl-PAHs from coal combustion, which is expected to be helpful for environmental behavior investigation and better pollution control of coal combustion.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.