The roles of Paracoccus huijuniae for enhancing denitrification with N-methyl pyrrolidone as the electron donor

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Meng Huang , Songyun Chen , Fei Liu , Haiyun Zhang , Xiaobing Gao , Linlin Chen , Yongming Zhang , Bruce E. Rittmann
{"title":"The roles of Paracoccus huijuniae for enhancing denitrification with N-methyl pyrrolidone as the electron donor","authors":"Meng Huang ,&nbsp;Songyun Chen ,&nbsp;Fei Liu ,&nbsp;Haiyun Zhang ,&nbsp;Xiaobing Gao ,&nbsp;Linlin Chen ,&nbsp;Yongming Zhang ,&nbsp;Bruce E. Rittmann","doi":"10.1016/j.ibiod.2025.106098","DOIUrl":null,"url":null,"abstract":"<div><div>A strain of <em>Paracoccus huijuniae</em> was isolated from acclimated denitrifying biomass. It was tested for denitrification activity alone or by bioaugmenting it into the denitrifying biomass when N-methyl pyrrolidone (NMP) was the electron donor. The nitrate removal rate was increased by 22 % when <em>P. huijuniae</em> was bioaugmented into the denitrifying biomass, since the nitrate-reduction rate by <em>P. huijuniae</em> was 3.2-fold greater than that for the denitrifying biomass alone. <em>P. huijuniae</em> alone achieved 100 % nitrate conversion to nitrite, but nitrite was not reduced unless nitrate disappeared completely, and then nitrite reduction was slow. Stoichiometric nitrite accumulation can be attributed to the activity of <em>nirK</em> in <em>P. huijuniae</em> being inhibited by the presence of nitrate. Thus, bioaugmentation with <em>P. huijuniae</em> enhanced overall denitrification kinetics by accelerating nitrate reduction to nitrite, but subsequent denitrification steps were completed by other denitrifying strains in the community.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"202 ","pages":"Article 106098"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525001027","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A strain of Paracoccus huijuniae was isolated from acclimated denitrifying biomass. It was tested for denitrification activity alone or by bioaugmenting it into the denitrifying biomass when N-methyl pyrrolidone (NMP) was the electron donor. The nitrate removal rate was increased by 22 % when P. huijuniae was bioaugmented into the denitrifying biomass, since the nitrate-reduction rate by P. huijuniae was 3.2-fold greater than that for the denitrifying biomass alone. P. huijuniae alone achieved 100 % nitrate conversion to nitrite, but nitrite was not reduced unless nitrate disappeared completely, and then nitrite reduction was slow. Stoichiometric nitrite accumulation can be attributed to the activity of nirK in P. huijuniae being inhibited by the presence of nitrate. Thus, bioaugmentation with P. huijuniae enhanced overall denitrification kinetics by accelerating nitrate reduction to nitrite, but subsequent denitrification steps were completed by other denitrifying strains in the community.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信