Enhancing secondary metabolite biosynthesis from ethnomedicinal plant Solanum nigrum L. through cytogenetically stable mass propagation, transgenic hairy root induction, and using different LED light and culture vessels for hairy root culture

IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Diptesh Biswas , Tarun Halder , Biswajit Ghosh
{"title":"Enhancing secondary metabolite biosynthesis from ethnomedicinal plant Solanum nigrum L. through cytogenetically stable mass propagation, transgenic hairy root induction, and using different LED light and culture vessels for hairy root culture","authors":"Diptesh Biswas ,&nbsp;Tarun Halder ,&nbsp;Biswajit Ghosh","doi":"10.1016/j.jbiotec.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed for stepwise enhancement of bioactive compound production in ethnomedicinal plant <em>Solanum nigrum</em> through novel approaches of micropropagation, hairy root induction, and treatment of hairy roots with various physical conditions. Polyamines were first-time used for <em>in vitro</em> shoot multiplication of <em>S. nigrum</em>, where highest shoot numbers (55.70 ± 0.64) were observed in Murashige and Skoog’s (MS) medium with 0.2 mg/L thiadiazuron + 20 mg/L spermine, whereas maximum root numbers (34.20 ± 0.80) were observed in ½MS medium with 0.5 mg/L indole-3-acetic acid. Pioneer studies of cytogenetical fidelity assessment through inter simple sequence repeat (ISSR) and start codon targeted (SCoT) markers, and chromosome analysis approved genetic uniformity in regenerated plants. Cent percent hairy roots were induced from <em>in vitro S. nigrum</em> leaves (25–30 roots/explant) using <em>Agrobacterium rhizogenes</em> (A4 strain). PCR of transgenes confirmed the transformed nature and absence of bacterial contamination in hairy roots. HPLC studies indicated greater secondary metabolites in hairy roots than <em>in vivo</em> and <em>in vitro</em> plants. Hairy root culture with different culture vessels revealed overall better biomass gain in tightly sealed vessels. However, hairy root cultures treated with red light showed highest biomass accumulation in fresh (2380.13 ± 16.83 mg) and dry (174.66 ± 4.68 mg) weight with maximum solasodine (3.25 ± 0.04 mg/g) and diosgenin (1.03 ± 0.02 mg/g) contents, whereas optimal production of caffeic (3.51 ± 0.05 mg/g), coumaric (2.53 ± 0.06 mg/g), ellagic (0.18 ± 0.02 mg/g), and ferulic (2.17 ± 0.03 mg/g) acid production was found in blue light. These reproducible protocols can be utilized in future bioreactor-mediated mass-culture of hairy roots for commercial-level secondary metabolite production from <em>S. nigrum</em>.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"404 ","pages":"Pages 63-82"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625000896","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed for stepwise enhancement of bioactive compound production in ethnomedicinal plant Solanum nigrum through novel approaches of micropropagation, hairy root induction, and treatment of hairy roots with various physical conditions. Polyamines were first-time used for in vitro shoot multiplication of S. nigrum, where highest shoot numbers (55.70 ± 0.64) were observed in Murashige and Skoog’s (MS) medium with 0.2 mg/L thiadiazuron + 20 mg/L spermine, whereas maximum root numbers (34.20 ± 0.80) were observed in ½MS medium with 0.5 mg/L indole-3-acetic acid. Pioneer studies of cytogenetical fidelity assessment through inter simple sequence repeat (ISSR) and start codon targeted (SCoT) markers, and chromosome analysis approved genetic uniformity in regenerated plants. Cent percent hairy roots were induced from in vitro S. nigrum leaves (25–30 roots/explant) using Agrobacterium rhizogenes (A4 strain). PCR of transgenes confirmed the transformed nature and absence of bacterial contamination in hairy roots. HPLC studies indicated greater secondary metabolites in hairy roots than in vivo and in vitro plants. Hairy root culture with different culture vessels revealed overall better biomass gain in tightly sealed vessels. However, hairy root cultures treated with red light showed highest biomass accumulation in fresh (2380.13 ± 16.83 mg) and dry (174.66 ± 4.68 mg) weight with maximum solasodine (3.25 ± 0.04 mg/g) and diosgenin (1.03 ± 0.02 mg/g) contents, whereas optimal production of caffeic (3.51 ± 0.05 mg/g), coumaric (2.53 ± 0.06 mg/g), ellagic (0.18 ± 0.02 mg/g), and ferulic (2.17 ± 0.03 mg/g) acid production was found in blue light. These reproducible protocols can be utilized in future bioreactor-mediated mass-culture of hairy roots for commercial-level secondary metabolite production from S. nigrum.
通过细胞遗传稳定的大量繁殖、转基因毛根诱导以及使用不同的 LED 光和培养皿进行毛根培养,提高民族药用植物黑木耳(Solanum nigrum L. )的次生代谢物生物合成能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biotechnology
Journal of biotechnology 工程技术-生物工程与应用微生物
CiteScore
8.90
自引率
2.40%
发文量
190
审稿时长
45 days
期刊介绍: The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信