Xiaoyan Cao , Yichi Zhang , Jialing Hu , Yifan Wei , Yingyue Ding , Yanfei Kang , Chuanqing Ren , Qin Wang
{"title":"Developing an aurone-based colorimetric fluorescent probe for fast cysteine sensing in foods, test strips and biological imaging","authors":"Xiaoyan Cao , Yichi Zhang , Jialing Hu , Yifan Wei , Yingyue Ding , Yanfei Kang , Chuanqing Ren , Qin Wang","doi":"10.1016/j.saa.2025.126226","DOIUrl":null,"url":null,"abstract":"<div><div>Cysteine (Cys) is integral to both industrial applications and biological processes. In this study, a novel colorimetric fluorescent sensor <strong>APA</strong>, defined by its intramolecular charge transfer (ICT) properties, was optimized to effectively discriminate Cys from other structurally similar compounds such as homocysteine (Hcy) and glutathione (GSH). We present the aurone-incorporated fluorescent sensor <strong>APA</strong>, which features a 4-dimethylaminocinnamaldehyde group conjugated to the aurone scaffold and facilitates selective detection of Cys with a limit of detection (LOD) of 25.7 nM. Compared to previous studies, sensor <strong>APA</strong> exhibits near-infrared properties, a reduced reaction time of just 2 min, and a significant Stokes shift of 190 nm. Notably, <strong>APA</strong> has been successfully employed for visual imaging of Cys in test strips and quantitative detection in various food samples in real-time (including garlic, carrot, tomato, onion, green pepper, cauliflower, daikon, lotus root, apple, pear, milk powder, bread, and biscuits). Furthermore, <strong>APA</strong> has proven effective for colorimetric imaging of both endogenous and exogenous Cys in A549 cells as well as zebrafish and mice models demonstrating its practical biological applications. Overall, our findings highlight the potential of <strong>APA</strong> as one of the most promising designs for sensing Cys within the food industry and biological systems. Additionally, APA-OH serves as an ideal fluorophore for constructing fluorescence sensors aimed at bioimaging.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"338 ","pages":"Article 126226"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525005323","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Cysteine (Cys) is integral to both industrial applications and biological processes. In this study, a novel colorimetric fluorescent sensor APA, defined by its intramolecular charge transfer (ICT) properties, was optimized to effectively discriminate Cys from other structurally similar compounds such as homocysteine (Hcy) and glutathione (GSH). We present the aurone-incorporated fluorescent sensor APA, which features a 4-dimethylaminocinnamaldehyde group conjugated to the aurone scaffold and facilitates selective detection of Cys with a limit of detection (LOD) of 25.7 nM. Compared to previous studies, sensor APA exhibits near-infrared properties, a reduced reaction time of just 2 min, and a significant Stokes shift of 190 nm. Notably, APA has been successfully employed for visual imaging of Cys in test strips and quantitative detection in various food samples in real-time (including garlic, carrot, tomato, onion, green pepper, cauliflower, daikon, lotus root, apple, pear, milk powder, bread, and biscuits). Furthermore, APA has proven effective for colorimetric imaging of both endogenous and exogenous Cys in A549 cells as well as zebrafish and mice models demonstrating its practical biological applications. Overall, our findings highlight the potential of APA as one of the most promising designs for sensing Cys within the food industry and biological systems. Additionally, APA-OH serves as an ideal fluorophore for constructing fluorescence sensors aimed at bioimaging.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.