{"title":"Miro1- a key player in β-cell function and mitochondrial dynamics under diabetes mellitus","authors":"Srikanth Kavyashree, Kannan Harithpriya, Kunka Mohanram Ramkumar","doi":"10.1016/j.mito.2025.102039","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial health is crucial for the survival and function of β-cells, preserving glucose homeostasis and effective insulin production. Miro1, a mitochondrial Rho GTPase1 protein, plays an essential role in maintaining the<!--> <!-->quality of mitochondria by regulating calcium homeostasis and mitophagy. In this review, we aim to explore the dysfunction of Miro1 in type 2 diabetes mellitus (T2DM) and its contribution to impaired Ca<sup>2+</sup> signaling, which increases oxidative stress in β-cells. This dysfunction is the hallmark of T2DM pathogenesis, leading to insufficient insulin production and poor glycemic control. Additionally, we discuss the role of Miro1 in modulating insulin secretion and inflammation, highlighting its effect on modulating key signaling cascades in β-cells. Altogether, enhancing Miro1 function and activity could alleviate mitochondrial dysfunction, reducing oxidative stress-mediated damage, and improving pancreatic β-cell survival. Targeting Miro1 with small molecules or gene-editing approaches could provide effective strategies for restoring cell function and insulin secretion in diabetic individuals. Exploring the deeper knowledge of Miro1 functions and interactions could lead to novel therapeutic advances in T2DM management.</div></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"84 ","pages":"Article 102039"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567724925000364","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial health is crucial for the survival and function of β-cells, preserving glucose homeostasis and effective insulin production. Miro1, a mitochondrial Rho GTPase1 protein, plays an essential role in maintaining the quality of mitochondria by regulating calcium homeostasis and mitophagy. In this review, we aim to explore the dysfunction of Miro1 in type 2 diabetes mellitus (T2DM) and its contribution to impaired Ca2+ signaling, which increases oxidative stress in β-cells. This dysfunction is the hallmark of T2DM pathogenesis, leading to insufficient insulin production and poor glycemic control. Additionally, we discuss the role of Miro1 in modulating insulin secretion and inflammation, highlighting its effect on modulating key signaling cascades in β-cells. Altogether, enhancing Miro1 function and activity could alleviate mitochondrial dysfunction, reducing oxidative stress-mediated damage, and improving pancreatic β-cell survival. Targeting Miro1 with small molecules or gene-editing approaches could provide effective strategies for restoring cell function and insulin secretion in diabetic individuals. Exploring the deeper knowledge of Miro1 functions and interactions could lead to novel therapeutic advances in T2DM management.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.