Existence for a second-order differential equation in a Banach space governed by an m-accretive operator

IF 2.4 2区 数学 Q1 MATHEMATICS
Parisa Jamshidnezhad , Shahram Saeidi
{"title":"Existence for a second-order differential equation in a Banach space governed by an m-accretive operator","authors":"Parisa Jamshidnezhad ,&nbsp;Shahram Saeidi","doi":"10.1016/j.jde.2025.113310","DOIUrl":null,"url":null,"abstract":"<div><div>In the framework of uniformly smooth Banach spaces, we derive the existence and uniqueness of bounded solutions for the general differential equation (inclusion) <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>q</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mi>A</mi><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, almost everywhere on <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>=</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, with the initial condition <span><math><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>x</mi><mo>∈</mo><mover><mrow><mi>D</mi><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>‾</mo></mover></math></span>. Here, <em>A</em> is a nonlinear m-accretive operator with <span><math><mn>0</mn><mo>∈</mo><mi>R</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><mi>f</mi><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>→</mo><mi>X</mi></math></span> is a given suitable function, and <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span> are continuous functions. By developing new methods, we extend several previously known results in the literature, including the works of Poffald-Reich 1986 and Moroşanu 2014, and prove the existence of solutions to the aforementioned differential equation for the first time in Banach spaces. We apply our results to investigate the weak and strong <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-valued solutions for certain wave equations on bounded domains. Most of the results are new, even for Hilbert spaces.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113310"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003377","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the framework of uniformly smooth Banach spaces, we derive the existence and uniqueness of bounded solutions for the general differential equation (inclusion) p(t)u(t)+q(t)u(t)Au(t)+f(t), almost everywhere on R+=[0,), with the initial condition u(0)=xD(A). Here, A is a nonlinear m-accretive operator with 0R(A), f:R+X is a given suitable function, and p,q are continuous functions. By developing new methods, we extend several previously known results in the literature, including the works of Poffald-Reich 1986 and Moroşanu 2014, and prove the existence of solutions to the aforementioned differential equation for the first time in Banach spaces. We apply our results to investigate the weak and strong Lp-valued solutions for certain wave equations on bounded domains. Most of the results are new, even for Hilbert spaces.
在均匀光滑巴拿赫空间的框架内,我们推导了一般微分方程(包含)p(t)u″(t)+q(t)u′(t)∈Au(t)+f(t)的有界解的存在性和唯一性,该方程在 R+=[0,∞]上几乎无处不在,初始条件为 u(0)=x∈D(A)‾。这里,A 是一个非线性 m-自洽算子,0∈R(A),f:R+→X 是一个给定的合适函数,p,q 是连续函数。通过开发新方法,我们扩展了文献中之前已知的几个结果,包括 Poffald-Reich 1986 和 Moroşanu 2014 的著作,并首次在巴拿赫空间中证明了上述微分方程解的存在性。我们应用我们的结果研究了有界域上某些波方程的弱和强 Lp 值解。大部分结果都是新的,甚至对希尔伯特空间也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信