Some geometric relations for equipotential curves

IF 2.4 2区 数学 Q1 MATHEMATICS
Yajun Zhou
{"title":"Some geometric relations for equipotential curves","authors":"Yajun Zhou","doi":"10.1016/j.jde.2025.113296","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>U</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>,</mo><mi>r</mi><mo>∈</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> be a harmonic function that solves an exterior Dirichlet problem. If all the level sets of <span><math><mi>U</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>,</mo><mi>r</mi><mo>∈</mo><mi>Ω</mi></math></span> are smooth Jordan curves, then there are several geometric inequalities that correlate the curvature <span><math><mi>κ</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> with the magnitude of gradient <span><math><mo>|</mo><mi>∇</mi><mi>U</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>|</mo></math></span> on each level set (“equipotential curve”). One of such inequalities is <span><math><mo>〈</mo><mo>[</mo><mi>κ</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>−</mo><mo>〈</mo><mi>κ</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>〉</mo><mo>]</mo><mo>[</mo><mo>|</mo><mi>∇</mi><mi>U</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>|</mo><mo>−</mo><mo>〈</mo><mo>|</mo><mi>∇</mi><mi>U</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>|</mo><mo>〉</mo><mo>]</mo><mo>〉</mo><mo>≥</mo><mn>0</mn></math></span>, where <span><math><mo>〈</mo><mo>⋅</mo><mo>〉</mo></math></span> denotes average over a level set, weighted by the arc length of the Jordan curve. We prove such a geometric inequality by constructing an entropy for each level set <span><math><mi>U</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><mi>φ</mi></math></span>, and showing that such an entropy is convex in <em>φ</em>. The geometric inequality for <span><math><mi>κ</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> and <span><math><mo>|</mo><mi>∇</mi><mi>U</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>|</mo></math></span> then follows from convexity and monotonicity of our entropy formula. A few other geometric relations for equipotential curves are also built on a convexity argument.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"433 ","pages":"Article 113296"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003237","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let U(r),rΩR2 be a harmonic function that solves an exterior Dirichlet problem. If all the level sets of U(r),rΩ are smooth Jordan curves, then there are several geometric inequalities that correlate the curvature κ(r) with the magnitude of gradient |U(r)| on each level set (“equipotential curve”). One of such inequalities is [κ(r)κ(r)][|U(r)||U(r)|]0, where denotes average over a level set, weighted by the arc length of the Jordan curve. We prove such a geometric inequality by constructing an entropy for each level set U(r)=φ, and showing that such an entropy is convex in φ. The geometric inequality for κ(r) and |U(r)| then follows from convexity and monotonicity of our entropy formula. A few other geometric relations for equipotential curves are also built on a convexity argument.
等势曲线的一些几何关系
设U(r),r∈Ω∧R2是一个解决外部狄利克雷问题的调和函数。如果U(r),r∈Ω的所有水平集都是光滑的约旦曲线,则存在几个几何不等式,将曲率κ(r)与每个水平集(“等势曲线”)上的梯度|∇U(r)|的大小相关联。其中一个不等式是< [κ(r)−< κ(r) >][|∇U(r)|−< |∇U(r)| >] >≥0,其中<⋅>表示水平集上的平均值,由Jordan曲线的弧长加权。我们通过构造每个水平集U(r)=φ的熵来证明这样的几何不等式,并证明这样的熵在φ上是凸的。κ(r)和|∇U(r)|的几何不等式则由熵公式的凸性和单调性推导出来。在凸性论证的基础上,还建立了等势曲线的其他几个几何关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信