Entropy generation and magnetohydrodynamic influences on hybrid nanofluid convection in a staggered cavity

Q1 Chemical Engineering
Yasir Ul Umair Bin Turabi , Shahzad Munir , R. Nawaz
{"title":"Entropy generation and magnetohydrodynamic influences on hybrid nanofluid convection in a staggered cavity","authors":"Yasir Ul Umair Bin Turabi ,&nbsp;Shahzad Munir ,&nbsp;R. Nawaz","doi":"10.1016/j.ijft.2025.101204","DOIUrl":null,"url":null,"abstract":"<div><div>Staggered cavity designs are widely used in engineering to enhance heat transfer and airflow, thereby improving the efficiency of systems such as radiators, heat exchangers, and electronic cooling. They also support renewable energy applications like solar collectors and insulated buildings by enhancing thermal resistance and reducing energy losses. In this computational study, we investigate entropy generation and double-diffusive natural convection in a staggered cavity containing a pair of embedded circular cylinders filled with a Casson hybrid nanofluid. The nanofluid comprises an ethylene glycol-water mixture with dispersed copper and alumina nanoparticles. The governing mathematical model is solved using the finite element method. Our analysis examines the influence of key parameters including the Casson parameter, magnetic field intensity, buoyancy effects, mass diffusivity, and nanoparticle volume fraction on the flow and heat transfer characteristics. The results reveal that enhanced buoyancy and a higher Casson parameter improve heat and mass transfer while increasing entropy generation, whereas stronger magnetic fields tend to suppress these effects. Additionally, higher nanoparticle concentrations lead to improved thermal performance. These findings provide valuable insights for optimizing thermal management systems in various industrial applications.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101204"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266620272500151X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Staggered cavity designs are widely used in engineering to enhance heat transfer and airflow, thereby improving the efficiency of systems such as radiators, heat exchangers, and electronic cooling. They also support renewable energy applications like solar collectors and insulated buildings by enhancing thermal resistance and reducing energy losses. In this computational study, we investigate entropy generation and double-diffusive natural convection in a staggered cavity containing a pair of embedded circular cylinders filled with a Casson hybrid nanofluid. The nanofluid comprises an ethylene glycol-water mixture with dispersed copper and alumina nanoparticles. The governing mathematical model is solved using the finite element method. Our analysis examines the influence of key parameters including the Casson parameter, magnetic field intensity, buoyancy effects, mass diffusivity, and nanoparticle volume fraction on the flow and heat transfer characteristics. The results reveal that enhanced buoyancy and a higher Casson parameter improve heat and mass transfer while increasing entropy generation, whereas stronger magnetic fields tend to suppress these effects. Additionally, higher nanoparticle concentrations lead to improved thermal performance. These findings provide valuable insights for optimizing thermal management systems in various industrial applications.
熵生成和磁流体动力学对交错空腔中混合纳米流体对流的影响
交错空腔设计广泛应用于工程中,以增强传热和气流,从而提高散热器、热交换器、电子冷却等系统的效率。它们还通过增强热阻和减少能量损失来支持太阳能集热器和隔热建筑等可再生能源应用。在这个计算研究中,我们研究了熵的产生和双扩散自然对流在一个交错腔中,其中包含一对嵌入的圆柱体,充满了卡森混合纳米流体。所述纳米流体包括具有分散的铜和氧化铝纳米颗粒的乙二醇-水混合物。采用有限元法求解控制数学模型。我们的分析考察了卡森参数、磁场强度、浮力效应、质量扩散率和纳米颗粒体积分数等关键参数对流动和传热特性的影响。结果表明,增强的浮力和较高的卡森参数改善了传热和传质,同时增加了熵的产生,而较强的磁场往往会抑制这些效应。此外,更高的纳米颗粒浓度会改善热性能。这些发现为优化各种工业应用中的热管理系统提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信