Neural network-based prediction of particle-induced fission cross sections for r-process nucleosynthesis trained with dynamical reaction models

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR
J.L. Rodríguez-Sánchez , G. García-Jiménez , H. Alvarez-Pol , M. Feijoo-Fontán , A. Graña-González
{"title":"Neural network-based prediction of particle-induced fission cross sections for r-process nucleosynthesis trained with dynamical reaction models","authors":"J.L. Rodríguez-Sánchez ,&nbsp;G. García-Jiménez ,&nbsp;H. Alvarez-Pol ,&nbsp;M. Feijoo-Fontán ,&nbsp;A. Graña-González","doi":"10.1016/j.nuclphysa.2025.123104","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale computations of fission properties play a crucial role in nuclear reaction network calculations simulating rapid neutron-capture process (r-process) nucleosynthesis. Due to the large number of fissioning nuclei contributing to the r-process, a description of particle-induced fission reactions is computationally challenging. In this work, we use theoretical calculations based on the INCL+ABLA models to train neural networks (NN). The results for the prediction of proton-induced spallation reactions, in particular fission, utilizing a large variety of NN models across the hyper-parameter space are presented, which are relevant for r-process calculations.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1060 ","pages":"Article 123104"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947425000909","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale computations of fission properties play a crucial role in nuclear reaction network calculations simulating rapid neutron-capture process (r-process) nucleosynthesis. Due to the large number of fissioning nuclei contributing to the r-process, a description of particle-induced fission reactions is computationally challenging. In this work, we use theoretical calculations based on the INCL+ABLA models to train neural networks (NN). The results for the prediction of proton-induced spallation reactions, in particular fission, utilizing a large variety of NN models across the hyper-parameter space are presented, which are relevant for r-process calculations.
用动态反应模型训练的r-过程核合成粒子诱导裂变截面的神经网络预测
裂变性质的大规模计算在模拟快速中子俘获过程(r-过程)核合成的核反应网络计算中起着至关重要的作用。由于大量的裂变核参与r过程,粒子诱导的裂变反应的描述在计算上具有挑战性。在这项工作中,我们使用基于INCL+ABLA模型的理论计算来训练神经网络(NN)。利用超参数空间中的各种神经网络模型,给出了预测质子诱导散裂反应,特别是裂变的结果,这与r过程计算有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信