Tiexin Ding , Lan Zhang , Jun Chen , Dayan Ma , Jing Han , Yong Han
{"title":"“Thermal bubbles”: Photothermally triggered by a carbon monoxide nanocontainer for antibiosis and immune modulation therapy","authors":"Tiexin Ding , Lan Zhang , Jun Chen , Dayan Ma , Jing Han , Yong Han","doi":"10.1016/j.nantod.2025.102758","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon monoxide (CO) has multi-biofunctions, including antibiosis and immunoregulation, promising great therapeutic potential. However, poor controllability of releasing, unbalanced dose for antibiosis and cytocompatibility, and unexplored antibacterial mechanism, limit its practical application. To address these issues, a photo-responsive COT nanocontainer is designed on Ti by loading thermosensitive CO donors in PDA-modified TiO<sub>2</sub> nanotubes. The nanocontainer shows outstanding photothermal properties, so as to break the Mn-CO bonds of CO donors under near-infrared (NIR) irradiation, generating thermal CO bubbles on-demand by regulating NIR power, and thus realizing different therapy modes. At antibacterial mode of COT with high-power NIR irradiation (e.g., 0.7 W cm<sup>−2</sup>), abundant hyperthermal CO bubbles from COT kill bacteria efficiently by inducing bacterial ferroptosis, which is demonstrated by hallmarks of overloaded Fe ions, lipid peroxidation, glutathione depletion, etc. At immunoregulation mode with low-power NIR irradiation (e.g., 0.3 W cm<sup>−2</sup>), mild thermal CO bubbles help macrophages to polarize into anti-inflammatory M2 phenotype, and they combine with cytokines from M2 macrophages to promote fibroblast response. These dual therapy modes of COT are verified to kill bacteria, modulate immunoreaction, and accelerate tissue repair in infected models. This study provides a controllable therapy strategy for using CO in treating infection and improving tissue regeneration.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"63 ","pages":"Article 102758"},"PeriodicalIF":13.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225001306","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon monoxide (CO) has multi-biofunctions, including antibiosis and immunoregulation, promising great therapeutic potential. However, poor controllability of releasing, unbalanced dose for antibiosis and cytocompatibility, and unexplored antibacterial mechanism, limit its practical application. To address these issues, a photo-responsive COT nanocontainer is designed on Ti by loading thermosensitive CO donors in PDA-modified TiO2 nanotubes. The nanocontainer shows outstanding photothermal properties, so as to break the Mn-CO bonds of CO donors under near-infrared (NIR) irradiation, generating thermal CO bubbles on-demand by regulating NIR power, and thus realizing different therapy modes. At antibacterial mode of COT with high-power NIR irradiation (e.g., 0.7 W cm−2), abundant hyperthermal CO bubbles from COT kill bacteria efficiently by inducing bacterial ferroptosis, which is demonstrated by hallmarks of overloaded Fe ions, lipid peroxidation, glutathione depletion, etc. At immunoregulation mode with low-power NIR irradiation (e.g., 0.3 W cm−2), mild thermal CO bubbles help macrophages to polarize into anti-inflammatory M2 phenotype, and they combine with cytokines from M2 macrophages to promote fibroblast response. These dual therapy modes of COT are verified to kill bacteria, modulate immunoreaction, and accelerate tissue repair in infected models. This study provides a controllable therapy strategy for using CO in treating infection and improving tissue regeneration.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.