{"title":"A unified approach to the spectral radius, connectivity and edge-connectivity of graphs","authors":"Yu Wang , Dan Li , Huiqiu Lin","doi":"10.1016/j.disc.2025.114544","DOIUrl":null,"url":null,"abstract":"<div><div>For two integers <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>h</mi><mo>≥</mo><mn>0</mn></math></span>, the <em>h-extra r-component connectivity</em> <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is defined as the minimum size of a subset <em>S</em> of vertices whose removal disconnects <em>G</em>, such that there are at least <em>r</em> connected components in <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span> and each component has at least <span><math><mi>h</mi><mo>+</mo><mn>1</mn></math></span> vertices. Denote by <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msubsup></mrow></msubsup></math></span> the set of <em>n</em>-vertex graphs with <em>h</em>-extra <em>r</em>-component connectivity <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> and minimum degree <em>δ</em>. The following problem concerning spectral radius was proposed by Brualdi and Solheid (1986) <span><span>[2]</span></span>: Given a set of graphs <span><math><mi>S</mi></math></span>, find an upper bound for the spectral radius of graphs in <span><math><mi>S</mi></math></span> and characterize the graphs in which the maximum spectral radius is attained. We study this question for <span><math><mi>S</mi><mo>=</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></msubsup></mrow></msubsup></math></span> where <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>h</mi><mo>≥</mo><mn>0</mn></math></span>. Fan, Gu and Lin (2024) <span><span>[7]</span></span> answered the question for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>h</mi><mo>=</mo><mn>0</mn></math></span>. In this paper, we solve this problem completely for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>h</mi><mo>≥</mo><mn>1</mn></math></span>. Moreover, we also investigate analogous problems for the edge version. This implies some previous results in connectivity and edge-connectivity.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114544"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001529","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For two integers and , the h-extra r-component connectivity of a graph G is defined as the minimum size of a subset S of vertices whose removal disconnects G, such that there are at least r connected components in and each component has at least vertices. Denote by the set of n-vertex graphs with h-extra r-component connectivity and minimum degree δ. The following problem concerning spectral radius was proposed by Brualdi and Solheid (1986) [2]: Given a set of graphs , find an upper bound for the spectral radius of graphs in and characterize the graphs in which the maximum spectral radius is attained. We study this question for where and . Fan, Gu and Lin (2024) [7] answered the question for and . In this paper, we solve this problem completely for and . Moreover, we also investigate analogous problems for the edge version. This implies some previous results in connectivity and edge-connectivity.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.