Automated material-aware BIM generation using deep learning for comprehensive indoor element reconstruction

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Mostafa Mahmoud , Yaxin LI , Mahmoud Adham , Wu CHEN
{"title":"Automated material-aware BIM generation using deep learning for comprehensive indoor element reconstruction","authors":"Mostafa Mahmoud ,&nbsp;Yaxin LI ,&nbsp;Mahmoud Adham ,&nbsp;Wu CHEN","doi":"10.1016/j.autcon.2025.106196","DOIUrl":null,"url":null,"abstract":"<div><div>Automating 3D reconstruction of indoor environments is essential for scene understanding in Building Information Modeling (BIM). This paper addresses the challenge of integrating geometric and material attributes in scan-to-BIM processes. A deep learning-based framework is developed to automatically extract and integrate geometric and material attributes from point clouds, incorporating an enhanced instance segmentation network, a material classification model, and an automated BIM integration workflow for accurate indoor modeling. The proposed framework reconstructs accurate 3D BIM models of space-forming and space-occupying elements while preserving key attributes. Experimental results show significant improvements in instance segmentation accuracy, with reconstructed 3D BIM models achieving over 98 % <span><math><mtext>correctness</mtext></math></span> and <span><math><mtext>completeness</mtext></math></span>, while the material classification model attains a point-based weighted <span><math><mi>F</mi><mn>1</mn><mo>−</mo><mtext>score</mtext></math></span> of 0.973 and an object-based accuracy of 94.70 %. These findings advance automated BIM generation, enhancing building planning, asset management, and sustainable design while inspiring further developments in scan-to-BIM automation.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"175 ","pages":"Article 106196"},"PeriodicalIF":9.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525002365","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Automating 3D reconstruction of indoor environments is essential for scene understanding in Building Information Modeling (BIM). This paper addresses the challenge of integrating geometric and material attributes in scan-to-BIM processes. A deep learning-based framework is developed to automatically extract and integrate geometric and material attributes from point clouds, incorporating an enhanced instance segmentation network, a material classification model, and an automated BIM integration workflow for accurate indoor modeling. The proposed framework reconstructs accurate 3D BIM models of space-forming and space-occupying elements while preserving key attributes. Experimental results show significant improvements in instance segmentation accuracy, with reconstructed 3D BIM models achieving over 98 % correctness and completeness, while the material classification model attains a point-based weighted F1score of 0.973 and an object-based accuracy of 94.70 %. These findings advance automated BIM generation, enhancing building planning, asset management, and sustainable design while inspiring further developments in scan-to-BIM automation.
利用深度学习自动生成材料感知的 BIM,实现全面的室内元素重建
在建筑信息模型(BIM)中,室内环境的自动三维重建对于场景理解至关重要。本文解决了在扫描到bim过程中整合几何和材料属性的挑战。开发了一个基于深度学习的框架,用于自动从点云中提取和集成几何和材料属性,并结合了增强的实例分割网络、材料分类模型和自动化BIM集成工作流,以实现准确的室内建模。所提出的框架在保留关键属性的同时重建了精确的空间形成和空间占用元素的3D BIM模型。实验结果表明,实例分割精度有了显著提高,重建的3D BIM模型的正确性和完整性达到98%以上,而材料分类模型的基于点的加权F1−得分为0.973,基于对象的准确率为94.70%。这些发现推动了自动化的BIM生成,增强了建筑规划、资产管理和可持续设计,同时激发了扫描到BIM自动化的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信