Xin Zhang , Shufang Wang , Siyu Wang , Zeyi Long , Cong Lu , Jianlin Wang , Lijun Yang , Cancan Yao , Bin He , Xihua Chen , Taifeng Zhuang , Xiangbo Xu , Yufeng Zheng
{"title":"A double network composite hydrogel with enhanced transdermal delivery by ultrasound for endometrial injury repair and fertility recovery","authors":"Xin Zhang , Shufang Wang , Siyu Wang , Zeyi Long , Cong Lu , Jianlin Wang , Lijun Yang , Cancan Yao , Bin He , Xihua Chen , Taifeng Zhuang , Xiangbo Xu , Yufeng Zheng","doi":"10.1016/j.bioactmat.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>Endometrial injury and resulting female infertility pose significant clinical challenges due to the notable shortcomings of traditional treatments. Herein, we proposed a double network composite hydrogel, CSMA-RC-Zn-PNS, which forms a physical barrier on damaged tissue through photo-crosslinking while enabling sustained release of the active ingredient PNS. Based on this, we developed a combined strategy to enhance transdermal delivery efficiency using ultrasound cavitation. <em>In vitro</em> experiments demonstrated that CSMA-RC-Zn-PNS exhibits excellent biosafety, biodegradability, and promotes cell proliferation, migration, and tube formation, along with antioxidant and antibacterial properties. In a rat endometrial injury model, the ultrasound cavitation effect was demonstrated to enhance transdermal delivery efficiency, and the ability of CSMA-RC-Zn-PNS to promote endometrial regeneration, anti-fibrosis and fertility restoration was verified. Overall, this strategy combining CSMA-RC-Zn-PNS hydrogel and ultrasound treatment shows promising applications in endometrial regeneration and female reproductive health.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"50 ","pages":"Pages 273-286"},"PeriodicalIF":18.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X2500146X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Endometrial injury and resulting female infertility pose significant clinical challenges due to the notable shortcomings of traditional treatments. Herein, we proposed a double network composite hydrogel, CSMA-RC-Zn-PNS, which forms a physical barrier on damaged tissue through photo-crosslinking while enabling sustained release of the active ingredient PNS. Based on this, we developed a combined strategy to enhance transdermal delivery efficiency using ultrasound cavitation. In vitro experiments demonstrated that CSMA-RC-Zn-PNS exhibits excellent biosafety, biodegradability, and promotes cell proliferation, migration, and tube formation, along with antioxidant and antibacterial properties. In a rat endometrial injury model, the ultrasound cavitation effect was demonstrated to enhance transdermal delivery efficiency, and the ability of CSMA-RC-Zn-PNS to promote endometrial regeneration, anti-fibrosis and fertility restoration was verified. Overall, this strategy combining CSMA-RC-Zn-PNS hydrogel and ultrasound treatment shows promising applications in endometrial regeneration and female reproductive health.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.