Effects of novel nonlinear flow channels inspired by classical mathematical function on the output performance and low-grade heat recovery efficiency of thermally regenerative ammonia-based flow battery
Jiebo Yang , Qinghua Yu , Yu Lei , Sheng Chen , Yang Yu , Fuwu Yan
{"title":"Effects of novel nonlinear flow channels inspired by classical mathematical function on the output performance and low-grade heat recovery efficiency of thermally regenerative ammonia-based flow battery","authors":"Jiebo Yang , Qinghua Yu , Yu Lei , Sheng Chen , Yang Yu , Fuwu Yan","doi":"10.1016/j.apenergy.2025.125917","DOIUrl":null,"url":null,"abstract":"<div><div>In addressing the challenges of enhancing the output performance and low-grade waste heat recovery efficiency of thermally regenerative ammonia-based flow battery (TRAFB), this study introduces four novel nonlinear flow channels: the Hyperbolic tangent function flow channel (HTF-FC), Elliptic function flow channel (EF-FC) Quadratic function flow channel (QF-FC), and Exponential function flow channel (ExF-FC). These flow channel designs are inspired by classical mathematical function curves, enabling more targeted mass transfer enhancement based on species distribution. Multiple quantitative metrics are employed to evaluate the effects of these nonlinear structures on cross-scale mass transfer, reactant distribution, power output, and thermoelectric conversion efficiency under both Forward Flow mode (FF mode) and Reverse Flow mode (RF mode). The findings reveal that optimizing mass transfer at the electrode interface of the channel end is more critical for enhancing performance in TRAFB. The overall performance of the nonlinear flow channels in FF mode is superior to that in RF mode, yet both outperform the conventional straight channel (S-FC), with the ExF-FC showing the best performance and the HTF-FC the least. The ExF-FC exhibits the highest overall mass transfer efficiency and uniformity of active species in the electrode region, and its nonlinear contraction zone at the channel tail induces a significant acceleration effect, increasing the Cu<sup>2+</sup> flux by ∼39.13 times in the reactant-starved region. When the inlet flow rate is 1 mL/min, the HTF-FC, QF-FC, EF-FC, and ExF-FC can enhance the peak power density by up to ∼1.30 %, ∼11.52 %, ∼54.67 %, and ∼ 80.65 %, respectively, compared to the S-FC, and when the inlet flow rate is increased to 3.8 mL/min, these enhancements reach ∼1.62 %, ∼42.60 %, ∼101.38 %, and ∼ 142.84 %, respectively. Moreover, the nonlinear channels significantly improve the energy storage capacity and waste heat recovery performance of TRAFB, particularly at high current densities. When the current density is 350 A/m<sup>2</sup>, at an inlet flow rate of 1 mL/min, the ExF-FC can enhance the electrical capacity and thermoelectric conversion efficiency by ∼2.81 times and ∼ 5.41 times, respectively, compared to the S-FC, and at an inlet flow rate of 3.8 mL/min, these increases are ∼1.11 times and ∼ 2.98 times, respectively.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"391 ","pages":"Article 125917"},"PeriodicalIF":10.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925006476","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In addressing the challenges of enhancing the output performance and low-grade waste heat recovery efficiency of thermally regenerative ammonia-based flow battery (TRAFB), this study introduces four novel nonlinear flow channels: the Hyperbolic tangent function flow channel (HTF-FC), Elliptic function flow channel (EF-FC) Quadratic function flow channel (QF-FC), and Exponential function flow channel (ExF-FC). These flow channel designs are inspired by classical mathematical function curves, enabling more targeted mass transfer enhancement based on species distribution. Multiple quantitative metrics are employed to evaluate the effects of these nonlinear structures on cross-scale mass transfer, reactant distribution, power output, and thermoelectric conversion efficiency under both Forward Flow mode (FF mode) and Reverse Flow mode (RF mode). The findings reveal that optimizing mass transfer at the electrode interface of the channel end is more critical for enhancing performance in TRAFB. The overall performance of the nonlinear flow channels in FF mode is superior to that in RF mode, yet both outperform the conventional straight channel (S-FC), with the ExF-FC showing the best performance and the HTF-FC the least. The ExF-FC exhibits the highest overall mass transfer efficiency and uniformity of active species in the electrode region, and its nonlinear contraction zone at the channel tail induces a significant acceleration effect, increasing the Cu2+ flux by ∼39.13 times in the reactant-starved region. When the inlet flow rate is 1 mL/min, the HTF-FC, QF-FC, EF-FC, and ExF-FC can enhance the peak power density by up to ∼1.30 %, ∼11.52 %, ∼54.67 %, and ∼ 80.65 %, respectively, compared to the S-FC, and when the inlet flow rate is increased to 3.8 mL/min, these enhancements reach ∼1.62 %, ∼42.60 %, ∼101.38 %, and ∼ 142.84 %, respectively. Moreover, the nonlinear channels significantly improve the energy storage capacity and waste heat recovery performance of TRAFB, particularly at high current densities. When the current density is 350 A/m2, at an inlet flow rate of 1 mL/min, the ExF-FC can enhance the electrical capacity and thermoelectric conversion efficiency by ∼2.81 times and ∼ 5.41 times, respectively, compared to the S-FC, and at an inlet flow rate of 3.8 mL/min, these increases are ∼1.11 times and ∼ 2.98 times, respectively.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.