Retreat of the Boothia-Lancaster ice stream from its Last Glacial Maximum extent and its role in the origin of Baffin Bay Detrital Carbonate (BBDC) events 0, 1 and 2
Anne Jennings , Kimberley Jenner , Alexandre Normandeau , Wendy Roth , John Andrews , Robert Kelleher , Juliette Girard , Brendan Reilly , Calvin Campbell , Robbie Bennett
{"title":"Retreat of the Boothia-Lancaster ice stream from its Last Glacial Maximum extent and its role in the origin of Baffin Bay Detrital Carbonate (BBDC) events 0, 1 and 2","authors":"Anne Jennings , Kimberley Jenner , Alexandre Normandeau , Wendy Roth , John Andrews , Robert Kelleher , Juliette Girard , Brendan Reilly , Calvin Campbell , Robbie Bennett","doi":"10.1016/j.quascirev.2025.109353","DOIUrl":null,"url":null,"abstract":"<div><div>We combine geomorphological and sediment core evidence to investigate phases of ice margin stability and instability during retreat of the Boothia Lancaster Ice Stream (BLIS) of the NE Laurentide Ice Sheet (LIS) since the Last Glacial Maximum (LGM). Sediment cores 2008029-059 PC and TWC (59CC) and 2013029-064 PC (64 PC) from Lancaster Sound and Baffin Bay, respectively, represent LGM through Holocene environments, including three Baffin Bay Detrital Carbonate (BBDC) events that have been thought to manifest calving events within Lancaster Sound. Previous mapping of glacigenic landforms shows that 64 PC lies within the LGM limit of the convergent BLIS and Tasiujaq Ice Stream (TIS) on the northeastern Baffin Island shelf, while 59CC terminates within subglacial/ice marginal sediments termed the Baffin Shelf Drift (BSD), capturing the history of BLIS retreat from 15.3 cal ka BP onward. In 64 PC, a basal sediment gravity flow deposit is overlain by dolomite-rich BBDC 2, which is re-interpreted here as a subglacial/ice marginal deposit and renamed GZ-BBDC. Both gravity flows are interpreted to have formed during retreat of the confluent TIS and BLIS from the LGM maximum extent. Overlying GZ-BBDC, in 64 PC, is a finely laminated lithofacies interpreted as an ice-shelf facies formed beneath the ice shelf fronting the confluent TIS and BLIS when it occupied a large LGM grounding zone wedge (GZW) in northern Baffin Bay. The ice-shelf facies indicates temporary stabilization of the conjoined TIS and BLIS. The overlying thin black glaciomarine diamicton records disintegration of the ice shelf and retreat of the TIS. Ice retreat over Cretaceous and younger bedrock into Lancaster Sound is recorded by dark brown diamicton and glaciomarine sediments in 59CC. The overlying tan, detrital carbonate-rich glaciomarine diamicton, BBDC 1 in 59 PC, manifests calving retreat of the BLIS onto the Paleozoic carbonate bedrock within Lancaster Sound by 15 cal ka BP. A slightly later onset of BBDC 1 in 64 PC, of ca.14.5 cal ka BP, points to the influence of local conditions such as sea ice and local iceberg calving on the distribution of IRD off of Pond Inlet. The pause in ice rafting and detrital carbonate deposition between BBDC 1 and BBDC 0 within the Younger Dryas chron likely results from BLIS readvance to Devon Island and its stabilization there until 11.6 cal ka BP. BLIS retreat into Prince Regent Inlet marks the onset of BBDC 0. These new results indicate multiple periods of instability of the BLIS, which are responsible for BBDC events identified throughout Baffin Bay.</div></div>","PeriodicalId":20926,"journal":{"name":"Quaternary Science Reviews","volume":"358 ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277379125001738","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We combine geomorphological and sediment core evidence to investigate phases of ice margin stability and instability during retreat of the Boothia Lancaster Ice Stream (BLIS) of the NE Laurentide Ice Sheet (LIS) since the Last Glacial Maximum (LGM). Sediment cores 2008029-059 PC and TWC (59CC) and 2013029-064 PC (64 PC) from Lancaster Sound and Baffin Bay, respectively, represent LGM through Holocene environments, including three Baffin Bay Detrital Carbonate (BBDC) events that have been thought to manifest calving events within Lancaster Sound. Previous mapping of glacigenic landforms shows that 64 PC lies within the LGM limit of the convergent BLIS and Tasiujaq Ice Stream (TIS) on the northeastern Baffin Island shelf, while 59CC terminates within subglacial/ice marginal sediments termed the Baffin Shelf Drift (BSD), capturing the history of BLIS retreat from 15.3 cal ka BP onward. In 64 PC, a basal sediment gravity flow deposit is overlain by dolomite-rich BBDC 2, which is re-interpreted here as a subglacial/ice marginal deposit and renamed GZ-BBDC. Both gravity flows are interpreted to have formed during retreat of the confluent TIS and BLIS from the LGM maximum extent. Overlying GZ-BBDC, in 64 PC, is a finely laminated lithofacies interpreted as an ice-shelf facies formed beneath the ice shelf fronting the confluent TIS and BLIS when it occupied a large LGM grounding zone wedge (GZW) in northern Baffin Bay. The ice-shelf facies indicates temporary stabilization of the conjoined TIS and BLIS. The overlying thin black glaciomarine diamicton records disintegration of the ice shelf and retreat of the TIS. Ice retreat over Cretaceous and younger bedrock into Lancaster Sound is recorded by dark brown diamicton and glaciomarine sediments in 59CC. The overlying tan, detrital carbonate-rich glaciomarine diamicton, BBDC 1 in 59 PC, manifests calving retreat of the BLIS onto the Paleozoic carbonate bedrock within Lancaster Sound by 15 cal ka BP. A slightly later onset of BBDC 1 in 64 PC, of ca.14.5 cal ka BP, points to the influence of local conditions such as sea ice and local iceberg calving on the distribution of IRD off of Pond Inlet. The pause in ice rafting and detrital carbonate deposition between BBDC 1 and BBDC 0 within the Younger Dryas chron likely results from BLIS readvance to Devon Island and its stabilization there until 11.6 cal ka BP. BLIS retreat into Prince Regent Inlet marks the onset of BBDC 0. These new results indicate multiple periods of instability of the BLIS, which are responsible for BBDC events identified throughout Baffin Bay.
期刊介绍:
Quaternary Science Reviews caters for all aspects of Quaternary science, and includes, for example, geology, geomorphology, geography, archaeology, soil science, palaeobotany, palaeontology, palaeoclimatology and the full range of applicable dating methods. The dividing line between what constitutes the review paper and one which contains new original data is not easy to establish, so QSR also publishes papers with new data especially if these perform a review function. All the Quaternary sciences are changing rapidly and subject to re-evaluation as the pace of discovery quickens; thus the diverse but comprehensive role of Quaternary Science Reviews keeps readers abreast of the wider issues relating to new developments in the field.