Bingzheng Tian , Min Zhang , Chao Zhu , Ruifang Yang , Gaofang Yin , Shuanggang Hu , Yihan Chen , Nanjing Zhao
{"title":"Contrastive cognition into the occurrence, source identification and risk assessment of antibiotics in various drinking water sources","authors":"Bingzheng Tian , Min Zhang , Chao Zhu , Ruifang Yang , Gaofang Yin , Shuanggang Hu , Yihan Chen , Nanjing Zhao","doi":"10.1016/j.envpol.2025.126226","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotics are prevalent in aquatic ecosystems, particularly in critical drinking water sources, posing serious threats to human health and ecosystems. Focusing on rivers, lakes, reservoirs and groundwaters in Anhui Province (China), this study systematically investigated the occurrence, influencing factors and source apportionment of antibiotics and assessed their ecological and health risks. The results indicated that the total antibiotic concentrations ranged from 0.04 to 215.13 ng/L, and lincosamides and sulfonamides were the primary antibiotic groups, with concentrations of nd-167.00 ng/L and nd-47.38 ng/L, respectively. Specifically, lincomycin (nd-159.38 ng/L) and clindamycin (nd-100.45 ng/L) were the concentration of the two highest antibiotics, while sulfamethoxazole had the highest detection frequency (86.16 %). The total concentration of antibiotics in rivers was significantly higher than in lakes, reservoirs, and groundwaters, and the structural composition of antibiotics in groundwaters differed distinctly from that in other water sources. Nitrogen levels showed significant spatial correlation with antibiotic distribution, and anthropogenic activities may exacerbate antibiotic contamination. The study identified farmland drainage and aquaculture as the main sources of antibiotics in rivers and reservoirs, respectively, while livestock was the main source in lakes and groundwaters. The maximum ecological and human health risk quotient (8.83 and 0.32) of rivers was higher than that of other water sources. Antibiotics posing ecological risks included sulfamethoxazole, lincomycin, clindamycin, and clarithromycin, while tylosin and lincomycin exhibited potential threats to human health. Although the risks posed by individual antibiotics and their combined effects were within acceptable limits, the long-term exposure to low-dose antibiotics in drinking-water sources warrants close attention and further investigation.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"374 ","pages":"Article 126226"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125005998","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotics are prevalent in aquatic ecosystems, particularly in critical drinking water sources, posing serious threats to human health and ecosystems. Focusing on rivers, lakes, reservoirs and groundwaters in Anhui Province (China), this study systematically investigated the occurrence, influencing factors and source apportionment of antibiotics and assessed their ecological and health risks. The results indicated that the total antibiotic concentrations ranged from 0.04 to 215.13 ng/L, and lincosamides and sulfonamides were the primary antibiotic groups, with concentrations of nd-167.00 ng/L and nd-47.38 ng/L, respectively. Specifically, lincomycin (nd-159.38 ng/L) and clindamycin (nd-100.45 ng/L) were the concentration of the two highest antibiotics, while sulfamethoxazole had the highest detection frequency (86.16 %). The total concentration of antibiotics in rivers was significantly higher than in lakes, reservoirs, and groundwaters, and the structural composition of antibiotics in groundwaters differed distinctly from that in other water sources. Nitrogen levels showed significant spatial correlation with antibiotic distribution, and anthropogenic activities may exacerbate antibiotic contamination. The study identified farmland drainage and aquaculture as the main sources of antibiotics in rivers and reservoirs, respectively, while livestock was the main source in lakes and groundwaters. The maximum ecological and human health risk quotient (8.83 and 0.32) of rivers was higher than that of other water sources. Antibiotics posing ecological risks included sulfamethoxazole, lincomycin, clindamycin, and clarithromycin, while tylosin and lincomycin exhibited potential threats to human health. Although the risks posed by individual antibiotics and their combined effects were within acceptable limits, the long-term exposure to low-dose antibiotics in drinking-water sources warrants close attention and further investigation.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.