{"title":"Tailoring and reversing m6A editing with sequential RNA bioorthogonal chemistry","authors":"Xingyu Liu, Qianqian Qi, Wei Xiong, Yuanyuan Zhang, Wei Shen, Xinyan Xu, Yunting Zhao, Ming Li, Enyi Zhou, Tian Tian, Xiang Zhou","doi":"10.1093/nar/gkaf283","DOIUrl":null,"url":null,"abstract":"Many existing methods for post-transcriptional RNA modification rely on a single-step approach, limiting the ability to reversibly control m6A methylation at specific sites. Here, we address this challenge by developing a multi-step system that builds on the concept of sequential RNA bioorthogonal chemistry. Our strategy uses an azide-based reagent (NAI-N3) capable of both cleavage and ligation reactions, thereby allowing iterative and reversible modifications of RNA in living cells. By applying this approach in CRISPR (clustered regularly interspaced short palindromic repeats)-based frameworks, we demonstrate tailored editing of m6A marks at targeted RNA sites, overcoming the one-way restriction of conventional bioorthogonal methods. This sequential protocol not only broadens the scope for fine-tuned RNA regulation but also provides a versatile platform for exploring dynamic m6A function in genetic and epigenetic research.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"110 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf283","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many existing methods for post-transcriptional RNA modification rely on a single-step approach, limiting the ability to reversibly control m6A methylation at specific sites. Here, we address this challenge by developing a multi-step system that builds on the concept of sequential RNA bioorthogonal chemistry. Our strategy uses an azide-based reagent (NAI-N3) capable of both cleavage and ligation reactions, thereby allowing iterative and reversible modifications of RNA in living cells. By applying this approach in CRISPR (clustered regularly interspaced short palindromic repeats)-based frameworks, we demonstrate tailored editing of m6A marks at targeted RNA sites, overcoming the one-way restriction of conventional bioorthogonal methods. This sequential protocol not only broadens the scope for fine-tuned RNA regulation but also provides a versatile platform for exploring dynamic m6A function in genetic and epigenetic research.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.