Elena Chiavacci, Roberta Camera, Mario Costa, Baldassare Fronte, Eva Terzibasi Tozzini, Alessandro Cellerino
{"title":"Nerve Growth Factor Receptor (NGFR/p75NTR) of the Small-Spotted Catshark (Scyliorhinus canicula): Evolutionary Conservation and Brain Function","authors":"Elena Chiavacci, Roberta Camera, Mario Costa, Baldassare Fronte, Eva Terzibasi Tozzini, Alessandro Cellerino","doi":"10.1002/cne.70049","DOIUrl":null,"url":null,"abstract":"<p>The p75NTR receptor, a member of the tumor necrosis factor (TNF) receptor superfamily, can participate in signaling pathways either by forming heteromeric complexes with other receptors, such as the Trk family (tropomyosin receptor kinases), or by functioning independently. p75NTR was investigated prevalently in the brain and retina of mammals, whereas almost nothing is known about its conservation among species. Here, we reconstructed the phylogenetic arb of p75NTR and described for the first time the p75NTR expression in the brain of the basal vertebrate Chondrichthyan <i>Scyliorhinus canicula</i> (<i>S. canicula</i>), uncovering the existing parallelism between ancient vertebrates and mammals. p75NTR functional conservation among vertebrates was further investigated by cloning the <i>S. canicula</i> nerve growth factor (NGF) and performing the canonical posterior commissure (PC)-12 differentiation assay, which results in standard neurite-like production. We then investigated the <i>S. canicula</i> p75NTR, which proves to be capable of complementing a specific clone of PC-12 lacking p75NTR (PC-12 p75NTR<sup>−</sup>/<sup>−</sup>). All together, our results highlighted the expression and functional conservation of p75NTR among vertebrates during the evolution.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"533 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.70049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.70049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The p75NTR receptor, a member of the tumor necrosis factor (TNF) receptor superfamily, can participate in signaling pathways either by forming heteromeric complexes with other receptors, such as the Trk family (tropomyosin receptor kinases), or by functioning independently. p75NTR was investigated prevalently in the brain and retina of mammals, whereas almost nothing is known about its conservation among species. Here, we reconstructed the phylogenetic arb of p75NTR and described for the first time the p75NTR expression in the brain of the basal vertebrate Chondrichthyan Scyliorhinus canicula (S. canicula), uncovering the existing parallelism between ancient vertebrates and mammals. p75NTR functional conservation among vertebrates was further investigated by cloning the S. canicula nerve growth factor (NGF) and performing the canonical posterior commissure (PC)-12 differentiation assay, which results in standard neurite-like production. We then investigated the S. canicula p75NTR, which proves to be capable of complementing a specific clone of PC-12 lacking p75NTR (PC-12 p75NTR−/−). All together, our results highlighted the expression and functional conservation of p75NTR among vertebrates during the evolution.
期刊介绍:
Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states.
Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se.
JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.