Mesoscale Convective Systems Tracking Method Intercomparison (MCSMIP): Application to DYAMOND Global km-Scale Simulations

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Zhe Feng, Andreas F. Prein, Julia Kukulies, Thomas Fiolleau, William K. Jones, Ben Maybee, Zachary L. Moon, Kelly M. Núñez Ocasio, Wenhao Dong, Maria J. Molina, Mary Grace Albright, Manikandan Rajagopal, Vanessa Robledo, Jinyan Song, Fengfei Song, L. Ruby Leung, Adam C. Varble, Cornelia Klein, Remy Roca, Ran Feng, John F. Mejia
{"title":"Mesoscale Convective Systems Tracking Method Intercomparison (MCSMIP): Application to DYAMOND Global km-Scale Simulations","authors":"Zhe Feng,&nbsp;Andreas F. Prein,&nbsp;Julia Kukulies,&nbsp;Thomas Fiolleau,&nbsp;William K. Jones,&nbsp;Ben Maybee,&nbsp;Zachary L. Moon,&nbsp;Kelly M. Núñez Ocasio,&nbsp;Wenhao Dong,&nbsp;Maria J. Molina,&nbsp;Mary Grace Albright,&nbsp;Manikandan Rajagopal,&nbsp;Vanessa Robledo,&nbsp;Jinyan Song,&nbsp;Fengfei Song,&nbsp;L. Ruby Leung,&nbsp;Adam C. Varble,&nbsp;Cornelia Klein,&nbsp;Remy Roca,&nbsp;Ran Feng,&nbsp;John F. Mejia","doi":"10.1029/2024JD042204","DOIUrl":null,"url":null,"abstract":"<p>Global kilometer-scale models represent the future of Earth system modeling, enabling explicit simulation of organized convective storms and their associated extreme weather. Here, we comprehensively evaluate tropical mesoscale convective system (MCS) characteristics in the DYAMOND (DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains) simulations for both summer and winter phases. Using 10 different feature trackers applied to simulations and satellite observations, we assess MCS frequency, precipitation, and other key characteristics. Substantial differences (a factor of 2–3) arise among trackers in observed MCS frequency and their precipitation contribution, but model-observation differences in MCS statistics are more consistent across trackers. DYAMOND models are generally skillful in simulating tropical mean MCS frequency, with multi-model mean biases ranging from −2%–8% over land and −8%–8% over ocean (summer vs. winter). However, most DYAMOND models underestimate MCS precipitation amount (23%) and their contribution to total precipitation (17%). Biases in precipitation contributions are generally smaller over land (13%) than over ocean (21%), with moderate inter-model variability. While models better simulate MCS diurnal cycles and cloud shield characteristics, they overestimate MCS precipitation intensity and underestimate stratiform rain contributions (up to a factor of 2), particularly over land, albeit observational uncertainties exist. Additionally, models exhibit a wide range of precipitable water in the tropics compared to reanalysis and satellite observations, with many models showing exaggerated sensitivity of MCS precipitation intensity to precipitable water. The MCS metrics developed here provide process-oriented diagnostics to guide future model development.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042204","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042204","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Global kilometer-scale models represent the future of Earth system modeling, enabling explicit simulation of organized convective storms and their associated extreme weather. Here, we comprehensively evaluate tropical mesoscale convective system (MCS) characteristics in the DYAMOND (DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains) simulations for both summer and winter phases. Using 10 different feature trackers applied to simulations and satellite observations, we assess MCS frequency, precipitation, and other key characteristics. Substantial differences (a factor of 2–3) arise among trackers in observed MCS frequency and their precipitation contribution, but model-observation differences in MCS statistics are more consistent across trackers. DYAMOND models are generally skillful in simulating tropical mean MCS frequency, with multi-model mean biases ranging from −2%–8% over land and −8%–8% over ocean (summer vs. winter). However, most DYAMOND models underestimate MCS precipitation amount (23%) and their contribution to total precipitation (17%). Biases in precipitation contributions are generally smaller over land (13%) than over ocean (21%), with moderate inter-model variability. While models better simulate MCS diurnal cycles and cloud shield characteristics, they overestimate MCS precipitation intensity and underestimate stratiform rain contributions (up to a factor of 2), particularly over land, albeit observational uncertainties exist. Additionally, models exhibit a wide range of precipitable water in the tropics compared to reanalysis and satellite observations, with many models showing exaggerated sensitivity of MCS precipitation intensity to precipitable water. The MCS metrics developed here provide process-oriented diagnostics to guide future model development.

Abstract Image

中尺度对流系统跟踪方法相互比较(MCSMIP):应用于 DYAMOND 全球公里尺度模拟
全球千米尺度模式代表了地球系统建模的未来,能够明确地模拟有组织的对流风暴及其相关的极端天气。本文综合评价了DYAMOND (non-hydrostatic domains DYnamics of atmospheric general circulation)模拟夏季和冬季两个阶段的热带中尺度对流系统(MCS)特征。利用10种不同的特征跟踪器应用于模拟和卫星观测,我们评估了MCS的频率、降水和其他关键特征。在观测到的MCS频率及其降水贡献方面,追踪器之间存在实质性差异(2-3倍),但MCS统计数据中的模式观测差异在追踪器之间更为一致。diamond模型通常擅长模拟热带平均MCS频率,多模型平均偏差范围为陆地- 2%-8%,海洋- 8%-8%(夏季与冬季)。然而,大多数diamond模式低估了MCS降水量(23%)及其对总降水量的贡献(17%)。降水贡献的偏差在陆地上(13%)一般小于在海洋上(21%),模式间变率中等。虽然模式更好地模拟了MCS日循环和云屏蔽特征,但它们高估了MCS降水强度,低估了层状雨的贡献(高达2倍),特别是在陆地上,尽管存在观测不确定性。此外,与再分析和卫星观测相比,模式显示热带地区可降水量的范围很广,许多模式显示MCS降水强度对可降水量的敏感性过高。这里开发的MCS度量提供面向过程的诊断,以指导未来的模型开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信