Washout Versus Washover: Distinct Trajectories of Barrier Reshaping

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Joshua D. Himmelstein, Antonio B. Rodriguez
{"title":"Washout Versus Washover: Distinct Trajectories of Barrier Reshaping","authors":"Joshua D. Himmelstein,&nbsp;Antonio B. Rodriguez","doi":"10.1029/2024JF008047","DOIUrl":null,"url":null,"abstract":"<p>Barrier islands are dynamic coastal landforms that can migrate landward from the press of sea-level rise and the pulse of storms. Previous work on barriers largely focuses on landward sediment mobilization, particularly through overwash, while the role of outwash—where sediment is transported seaward—remains underexamined. There exists a lack of direct comparisons between the processes that restore sediment volume and the timescales of recovery following outwash and overwash events. Here, we used high-resolution mapping and in situ and modeled water levels to quantify morphologic change and its relation to inundation at three contrasting sites. Our results demonstrate that outwash can remain a net erosive scar for years after formation, while overwash magnitude, frequency, and thus persistence vary largely depending on the width and elevational resistance of the barrier. When elevational resistance to overtopping is low, we show that intermediate high-water events can contribute as much sediment to island overwash as larger named storms and that these processes are key for outwash recovery. We find that modeled total water level correlates positively with volume change, while discrepancies between modeled and observed water levels implicate runup overwash as the dominant mode of transport. Together, we use these data to suggest a differentiation between overwash and outwash processes and their resulting morphologies in studies that aim to predict the impact of storms on barrier island transgression rates and broader ecological function.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF008047","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Barrier islands are dynamic coastal landforms that can migrate landward from the press of sea-level rise and the pulse of storms. Previous work on barriers largely focuses on landward sediment mobilization, particularly through overwash, while the role of outwash—where sediment is transported seaward—remains underexamined. There exists a lack of direct comparisons between the processes that restore sediment volume and the timescales of recovery following outwash and overwash events. Here, we used high-resolution mapping and in situ and modeled water levels to quantify morphologic change and its relation to inundation at three contrasting sites. Our results demonstrate that outwash can remain a net erosive scar for years after formation, while overwash magnitude, frequency, and thus persistence vary largely depending on the width and elevational resistance of the barrier. When elevational resistance to overtopping is low, we show that intermediate high-water events can contribute as much sediment to island overwash as larger named storms and that these processes are key for outwash recovery. We find that modeled total water level correlates positively with volume change, while discrepancies between modeled and observed water levels implicate runup overwash as the dominant mode of transport. Together, we use these data to suggest a differentiation between overwash and outwash processes and their resulting morphologies in studies that aim to predict the impact of storms on barrier island transgression rates and broader ecological function.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信