Electrical, magnetic, and magneto-electric properties of PVDF/ZnFe2O4 polymer nanocomposites

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Harsha Chouhan, Maheswar Panda, Samanway Mohanta, Dinesh Kumar Shukla
{"title":"Electrical, magnetic, and magneto-electric properties of PVDF/ZnFe2O4 polymer nanocomposites","authors":"Harsha Chouhan,&nbsp;Maheswar Panda,&nbsp;Samanway Mohanta,&nbsp;Dinesh Kumar Shukla","doi":"10.1007/s10854-025-14721-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, (1–x) Polyvinylidene fluoride (PVDF)/(x) ZnFe<sub>2</sub>O<sub>4</sub> (ZF), x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, &amp; 1.0 polymer nanocomposites (PNC) were prepared. The idea of preparing nanocomposites employing the synthesis method is novel as the thermal treatment is used to control the agglomeration and further cold-pressed method to preserve the spherulites helpful in improved multiferroic properties. A detailed and systematic study on percolation, electrical, magnetic, and magneto-electric properties were performed. Electrical measurements indicate a substantial enhancement in the dielectric constant from 32 to 70 (100 Hz) at the percolation threshold of 0.39 <span>\\(\\pm\\)</span> 0.001 during the insulator-to-metal transition. The percolation exponents [s, s’] were assessed utilizing scaling laws, lying in the universal percolation region. Modulus spectra demonstrated relaxation behavior at the percolation threshold, and the relaxation was fitted with the modified Kohlrausch–Williams–Watts function, yielding a stretching coefficient within the range of [0–1], confirming non-Debye-type relaxation. Notably, percolated samples exhibited improved conductivity, obeying Jonscher’s power law. Additionally, the Arrott plot confirms the ferromagnetic behavior through positive intercepts on the M<sup>2</sup> axis, and the magnetization is retained in the PNC by the sum property of the composite. The highest magneto-electric coupling coefficient value is about 0.6 mV/cm. Oe is achieved in 0.6PVDF- 0.4ZF nanocomposites at the low frequency of 23-Hz AC field superimposed with 0.5 Tesla DC field due to the higher magnetostriction generated in ferrite at this fraction, resulting in large change in the magneto-electric coupling coefficient.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14721-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, (1–x) Polyvinylidene fluoride (PVDF)/(x) ZnFe2O4 (ZF), x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, & 1.0 polymer nanocomposites (PNC) were prepared. The idea of preparing nanocomposites employing the synthesis method is novel as the thermal treatment is used to control the agglomeration and further cold-pressed method to preserve the spherulites helpful in improved multiferroic properties. A detailed and systematic study on percolation, electrical, magnetic, and magneto-electric properties were performed. Electrical measurements indicate a substantial enhancement in the dielectric constant from 32 to 70 (100 Hz) at the percolation threshold of 0.39 \(\pm\) 0.001 during the insulator-to-metal transition. The percolation exponents [s, s’] were assessed utilizing scaling laws, lying in the universal percolation region. Modulus spectra demonstrated relaxation behavior at the percolation threshold, and the relaxation was fitted with the modified Kohlrausch–Williams–Watts function, yielding a stretching coefficient within the range of [0–1], confirming non-Debye-type relaxation. Notably, percolated samples exhibited improved conductivity, obeying Jonscher’s power law. Additionally, the Arrott plot confirms the ferromagnetic behavior through positive intercepts on the M2 axis, and the magnetization is retained in the PNC by the sum property of the composite. The highest magneto-electric coupling coefficient value is about 0.6 mV/cm. Oe is achieved in 0.6PVDF- 0.4ZF nanocomposites at the low frequency of 23-Hz AC field superimposed with 0.5 Tesla DC field due to the higher magnetostriction generated in ferrite at this fraction, resulting in large change in the magneto-electric coupling coefficient.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信