Sliding Mode Control of Switched Hamiltonian Systems: A Geometric Algebra Approach

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
H. Sira-Ramírez, B. C. Gómez-León, M. A. Aguilar-Orduña
{"title":"Sliding Mode Control of Switched Hamiltonian Systems: A Geometric Algebra Approach","authors":"H. Sira-Ramírez,&nbsp;B. C. Gómez-León,&nbsp;M. A. Aguilar-Orduña","doi":"10.1007/s00006-025-01380-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, a Geometric Algebra (GA) and Geometric Calculus (GC) based exposition is carried out dealing with the formal characterization of sliding regimes for general Single-Input-Single-Output (SISO) nonlinear switched controlled Hamiltonian systems. Necessary and sufficient conditions for the local existence of a sliding regime on a given vector manifold are presented. Feedback controller design strategies for achieving local sliding regimes on a given smooth vector manifold—defined in the phase space of the system—are also derived using the GA-GC framework. One such controller design method, which is mathematically justified, is based on the invariance property of the leaves of the foliation induced by the sliding surface coordinate function level sets. The idealized average smooth sliding motions are shown to arise from an extrinsic projection operator whose geometric properties are exploited for characterizing robustness with respect to unknown exogenous perturbation vector fields. An application example is provided from the power electronics area.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-025-01380-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01380-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a Geometric Algebra (GA) and Geometric Calculus (GC) based exposition is carried out dealing with the formal characterization of sliding regimes for general Single-Input-Single-Output (SISO) nonlinear switched controlled Hamiltonian systems. Necessary and sufficient conditions for the local existence of a sliding regime on a given vector manifold are presented. Feedback controller design strategies for achieving local sliding regimes on a given smooth vector manifold—defined in the phase space of the system—are also derived using the GA-GC framework. One such controller design method, which is mathematically justified, is based on the invariance property of the leaves of the foliation induced by the sliding surface coordinate function level sets. The idealized average smooth sliding motions are shown to arise from an extrinsic projection operator whose geometric properties are exploited for characterizing robustness with respect to unknown exogenous perturbation vector fields. An application example is provided from the power electronics area.

切换哈密顿系统的滑模控制:一种几何代数方法
本文以几何代数(GA)和几何微积分(GC)为基础,阐述了一般单输入-单输出(SISO)非线性开关控制哈密顿系统滑动机制的形式特征。提出了在给定向量流形上局部存在滑动机制的必要条件和充分条件。此外,还利用 GA-GC 框架推导出了在系统相空间中定义的给定光滑矢量流形上实现局部滑动机制的反馈控制器设计策略。其中一种在数学上合理的控制器设计方法是基于滑动面坐标函数水平集所诱导的折叶的不变性。理想化的平均平滑滑动运动源于一个外在投影算子,利用该算子的几何特性,可以描述未知外生扰动矢量场的鲁棒性。本文提供了一个电力电子领域的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信