H. Sira-Ramírez, B. C. Gómez-León, M. A. Aguilar-Orduña
{"title":"Sliding Mode Control of Switched Hamiltonian Systems: A Geometric Algebra Approach","authors":"H. Sira-Ramírez, B. C. Gómez-León, M. A. Aguilar-Orduña","doi":"10.1007/s00006-025-01380-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, a Geometric Algebra (GA) and Geometric Calculus (GC) based exposition is carried out dealing with the formal characterization of sliding regimes for general Single-Input-Single-Output (SISO) nonlinear switched controlled Hamiltonian systems. Necessary and sufficient conditions for the local existence of a sliding regime on a given vector manifold are presented. Feedback controller design strategies for achieving local sliding regimes on a given smooth vector manifold—defined in the phase space of the system—are also derived using the GA-GC framework. One such controller design method, which is mathematically justified, is based on the invariance property of the leaves of the foliation induced by the sliding surface coordinate function level sets. The idealized average smooth sliding motions are shown to arise from an extrinsic projection operator whose geometric properties are exploited for characterizing robustness with respect to unknown exogenous perturbation vector fields. An application example is provided from the power electronics area.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-025-01380-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01380-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a Geometric Algebra (GA) and Geometric Calculus (GC) based exposition is carried out dealing with the formal characterization of sliding regimes for general Single-Input-Single-Output (SISO) nonlinear switched controlled Hamiltonian systems. Necessary and sufficient conditions for the local existence of a sliding regime on a given vector manifold are presented. Feedback controller design strategies for achieving local sliding regimes on a given smooth vector manifold—defined in the phase space of the system—are also derived using the GA-GC framework. One such controller design method, which is mathematically justified, is based on the invariance property of the leaves of the foliation induced by the sliding surface coordinate function level sets. The idealized average smooth sliding motions are shown to arise from an extrinsic projection operator whose geometric properties are exploited for characterizing robustness with respect to unknown exogenous perturbation vector fields. An application example is provided from the power electronics area.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.